Matches in SemOpenAlex for { <https://semopenalex.org/work/W3212093928> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3212093928 abstract "In plane-wave imaging, multiple unfocused ultrasound waves are transmitted into a medium of interest from different angles and an image is formed from the recorded reflections. The number of plane waves used leads to a tradeoff between frame-rate and image quality, with single-plane-wave (SPW) imaging being the fastest possible modality with the worst image quality. Recently, deep learning methods have been proposed to improve ultrasound imaging. One approach is to use image-to-image networks that work on the formed image and another is to directly learn a mapping from data to an image. Both approaches utilize purely data-driven models and require deep, expressive network architectures, combined with large numbers of training samples to obtain good results. Here, we propose a data-to-image architecture that incorporates a wave-physics-based image formation algorithm in-between deep convolutional neural networks. To achieve this, we implement the Fourier (FK) migration method as network layers and train the whole network end-to-end. We compare our proposed data-to-image network with an image-to-image network in simulated data experiments, mimicking a medical ultrasound application. Experiments show that it is possible to obtain high-quality SPW images, almost similar to an image formed using 75 plane waves over an angular range of ±16°. This illustrates the great potential of combining deep neural networks with physics-based image formation algorithms for SPW imaging." @default.
- W3212093928 created "2021-11-22" @default.
- W3212093928 creator A5008696762 @default.
- W3212093928 creator A5024476965 @default.
- W3212093928 creator A5036662934 @default.
- W3212093928 creator A5047240458 @default.
- W3212093928 date "2021-09-11" @default.
- W3212093928 modified "2023-09-27" @default.
- W3212093928 title "Single Plane-Wave Imaging using Physics-Based Deep Learning" @default.
- W3212093928 cites W1986081346 @default.
- W3212093928 cites W2010807412 @default.
- W3212093928 cites W2047488822 @default.
- W3212093928 cites W2135347862 @default.
- W3212093928 cites W2162473564 @default.
- W3212093928 cites W2790266242 @default.
- W3212093928 cites W2969940716 @default.
- W3212093928 cites W2995832220 @default.
- W3212093928 cites W3009309404 @default.
- W3212093928 cites W3024925548 @default.
- W3212093928 cites W3034193293 @default.
- W3212093928 cites W3083458285 @default.
- W3212093928 cites W3100302811 @default.
- W3212093928 cites W4250482878 @default.
- W3212093928 doi "https://doi.org/10.1109/ius52206.2021.9593589" @default.
- W3212093928 hasPublicationYear "2021" @default.
- W3212093928 type Work @default.
- W3212093928 sameAs 3212093928 @default.
- W3212093928 citedByCount "0" @default.
- W3212093928 crossrefType "proceedings-article" @default.
- W3212093928 hasAuthorship W3212093928A5008696762 @default.
- W3212093928 hasAuthorship W3212093928A5024476965 @default.
- W3212093928 hasAuthorship W3212093928A5036662934 @default.
- W3212093928 hasAuthorship W3212093928A5047240458 @default.
- W3212093928 hasBestOaLocation W32120939282 @default.
- W3212093928 hasConcept C108583219 @default.
- W3212093928 hasConcept C115961682 @default.
- W3212093928 hasConcept C120515352 @default.
- W3212093928 hasConcept C125045340 @default.
- W3212093928 hasConcept C154945302 @default.
- W3212093928 hasConcept C31972630 @default.
- W3212093928 hasConcept C3261483 @default.
- W3212093928 hasConcept C41008148 @default.
- W3212093928 hasConcept C50644808 @default.
- W3212093928 hasConcept C55020928 @default.
- W3212093928 hasConcept C81363708 @default.
- W3212093928 hasConceptScore W3212093928C108583219 @default.
- W3212093928 hasConceptScore W3212093928C115961682 @default.
- W3212093928 hasConceptScore W3212093928C120515352 @default.
- W3212093928 hasConceptScore W3212093928C125045340 @default.
- W3212093928 hasConceptScore W3212093928C154945302 @default.
- W3212093928 hasConceptScore W3212093928C31972630 @default.
- W3212093928 hasConceptScore W3212093928C3261483 @default.
- W3212093928 hasConceptScore W3212093928C41008148 @default.
- W3212093928 hasConceptScore W3212093928C50644808 @default.
- W3212093928 hasConceptScore W3212093928C55020928 @default.
- W3212093928 hasConceptScore W3212093928C81363708 @default.
- W3212093928 hasLocation W32120939281 @default.
- W3212093928 hasLocation W32120939282 @default.
- W3212093928 hasLocation W32120939283 @default.
- W3212093928 hasOpenAccess W3212093928 @default.
- W3212093928 hasPrimaryLocation W32120939281 @default.
- W3212093928 hasRelatedWork W1776209122 @default.
- W3212093928 hasRelatedWork W2574052219 @default.
- W3212093928 hasRelatedWork W2731899572 @default.
- W3212093928 hasRelatedWork W3133861977 @default.
- W3212093928 hasRelatedWork W3197242714 @default.
- W3212093928 hasRelatedWork W3212093928 @default.
- W3212093928 hasRelatedWork W4200173597 @default.
- W3212093928 hasRelatedWork W4312417841 @default.
- W3212093928 hasRelatedWork W4312784892 @default.
- W3212093928 hasRelatedWork W4321369474 @default.
- W3212093928 isParatext "false" @default.
- W3212093928 isRetracted "false" @default.
- W3212093928 magId "3212093928" @default.
- W3212093928 workType "article" @default.