Matches in SemOpenAlex for { <https://semopenalex.org/work/W3212260380> ?p ?o ?g. }
- W3212260380 endingPage "e774" @default.
- W3212260380 startingPage "e766" @default.
- W3212260380 abstract "BackgroundIncreasing human demand for water and changes in water availability due to climate change threatens water security worldwide. Additionally, exploitation of water resources induces stress on freshwater environments, leading to biodiversity loss and reduced ecosystem services. We aimed to conduct a spatially detailed assessment of global human water stress for low to high environmental flow (EF) protection.MethodsIn this modelling study, we used the LISFLOOD model to generate daily natural flows without anthropogenic water use for 1980–2018. On the basis of these flows, we selected three EF methods (EF with high ecological protection [EFPROT], EF with minimum flow requirements [EFMIN], and variable monthly flow [EFVMF]) to calculate monthly EFs. We assessed monthly consumptive water use for industry, agricultural crops, livestock, municipalities, and energy production for 2010. We then estimated the corresponding number of people under water stress per month on a global and national level using a spatially detailed population database for 2010.FindingsWe estimate that 3·2 billion (EFPROT), 2·4 billion (EFVMF), and 2·2 billion (EFMIN) people lived under water stress for at least 1 month per year, corresponding to 46%, 35%, and 32% of the world's population in 2010, respectively. Around 80% of people living under water stress lived in Asia; in particular, India, Pakistan, and northeast China. Compared with EFMIN, imposing EFPROT globally would have put between 710 million (March) to 1 billion (June) additional people under water stress on a monthly basis, whereas this would have been 72 million (August) to 218 million (April) additional people if EFVMF were imposed.InterpretationEnsuring high ecological protection would put nearly half of the world's population (3·2 billion people) under water stress for at least 1 month per year. Policy makers and water managers have to make an important trade-off when allocating limited water resources between direct human needs and the environment. A better understanding of local ecosystem needs is crucial to alleviating current and future human water stress, while sustaining healthy ecosystems.FundingNone. Increasing human demand for water and changes in water availability due to climate change threatens water security worldwide. Additionally, exploitation of water resources induces stress on freshwater environments, leading to biodiversity loss and reduced ecosystem services. We aimed to conduct a spatially detailed assessment of global human water stress for low to high environmental flow (EF) protection. In this modelling study, we used the LISFLOOD model to generate daily natural flows without anthropogenic water use for 1980–2018. On the basis of these flows, we selected three EF methods (EF with high ecological protection [EFPROT], EF with minimum flow requirements [EFMIN], and variable monthly flow [EFVMF]) to calculate monthly EFs. We assessed monthly consumptive water use for industry, agricultural crops, livestock, municipalities, and energy production for 2010. We then estimated the corresponding number of people under water stress per month on a global and national level using a spatially detailed population database for 2010. We estimate that 3·2 billion (EFPROT), 2·4 billion (EFVMF), and 2·2 billion (EFMIN) people lived under water stress for at least 1 month per year, corresponding to 46%, 35%, and 32% of the world's population in 2010, respectively. Around 80% of people living under water stress lived in Asia; in particular, India, Pakistan, and northeast China. Compared with EFMIN, imposing EFPROT globally would have put between 710 million (March) to 1 billion (June) additional people under water stress on a monthly basis, whereas this would have been 72 million (August) to 218 million (April) additional people if EFVMF were imposed. Ensuring high ecological protection would put nearly half of the world's population (3·2 billion people) under water stress for at least 1 month per year. Policy makers and water managers have to make an important trade-off when allocating limited water resources between direct human needs and the environment. A better understanding of local ecosystem needs is crucial to alleviating current and future human water stress, while sustaining healthy ecosystems." @default.
- W3212260380 created "2021-11-22" @default.
- W3212260380 creator A5036857139 @default.
- W3212260380 creator A5036951566 @default.
- W3212260380 creator A5036974309 @default.
- W3212260380 creator A5038494898 @default.
- W3212260380 creator A5044251090 @default.
- W3212260380 creator A5072795131 @default.
- W3212260380 creator A5079990167 @default.
- W3212260380 date "2021-11-01" @default.
- W3212260380 modified "2023-10-10" @default.
- W3212260380 title "The number of people exposed to water stress in relation to how much water is reserved for the environment: a global modelling study" @default.
- W3212260380 cites W1536836039 @default.
- W3212260380 cites W1578078463 @default.
- W3212260380 cites W1898854960 @default.
- W3212260380 cites W1975503965 @default.
- W3212260380 cites W1981410107 @default.
- W3212260380 cites W1982901688 @default.
- W3212260380 cites W1986286171 @default.
- W3212260380 cites W1996950224 @default.
- W3212260380 cites W2013061102 @default.
- W3212260380 cites W2015053255 @default.
- W3212260380 cites W2017548562 @default.
- W3212260380 cites W2112748495 @default.
- W3212260380 cites W2123448766 @default.
- W3212260380 cites W2130560194 @default.
- W3212260380 cites W2134241071 @default.
- W3212260380 cites W2142231247 @default.
- W3212260380 cites W2144990831 @default.
- W3212260380 cites W2157954302 @default.
- W3212260380 cites W2163288194 @default.
- W3212260380 cites W2260274902 @default.
- W3212260380 cites W2560092559 @default.
- W3212260380 cites W2754815916 @default.
- W3212260380 cites W2803786315 @default.
- W3212260380 cites W2888800642 @default.
- W3212260380 cites W2899100088 @default.
- W3212260380 cites W2901080265 @default.
- W3212260380 cites W2905097739 @default.
- W3212260380 cites W2937103134 @default.
- W3212260380 cites W2948216297 @default.
- W3212260380 cites W2982687801 @default.
- W3212260380 cites W2995703301 @default.
- W3212260380 cites W3005619497 @default.
- W3212260380 cites W3006143949 @default.
- W3212260380 cites W3023846469 @default.
- W3212260380 cites W3108564727 @default.
- W3212260380 cites W3190879475 @default.
- W3212260380 doi "https://doi.org/10.1016/s2542-5196(21)00234-5" @default.
- W3212260380 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34774120" @default.
- W3212260380 hasPublicationYear "2021" @default.
- W3212260380 type Work @default.
- W3212260380 sameAs 3212260380 @default.
- W3212260380 citedByCount "11" @default.
- W3212260380 countsByYear W32122603802022 @default.
- W3212260380 countsByYear W32122603802023 @default.
- W3212260380 crossrefType "journal-article" @default.
- W3212260380 hasAuthorship W3212260380A5036857139 @default.
- W3212260380 hasAuthorship W3212260380A5036951566 @default.
- W3212260380 hasAuthorship W3212260380A5036974309 @default.
- W3212260380 hasAuthorship W3212260380A5038494898 @default.
- W3212260380 hasAuthorship W3212260380A5044251090 @default.
- W3212260380 hasAuthorship W3212260380A5072795131 @default.
- W3212260380 hasAuthorship W3212260380A5079990167 @default.
- W3212260380 hasBestOaLocation W32122603801 @default.
- W3212260380 hasConcept C110158866 @default.
- W3212260380 hasConcept C112964050 @default.
- W3212260380 hasConcept C118518473 @default.
- W3212260380 hasConcept C130217890 @default.
- W3212260380 hasConcept C132651083 @default.
- W3212260380 hasConcept C144024400 @default.
- W3212260380 hasConcept C149207113 @default.
- W3212260380 hasConcept C149923435 @default.
- W3212260380 hasConcept C153823671 @default.
- W3212260380 hasConcept C166957645 @default.
- W3212260380 hasConcept C176205827 @default.
- W3212260380 hasConcept C18903297 @default.
- W3212260380 hasConcept C191935318 @default.
- W3212260380 hasConcept C205649164 @default.
- W3212260380 hasConcept C2778570914 @default.
- W3212260380 hasConcept C2908647359 @default.
- W3212260380 hasConcept C39432304 @default.
- W3212260380 hasConcept C526734887 @default.
- W3212260380 hasConcept C549605437 @default.
- W3212260380 hasConcept C86803240 @default.
- W3212260380 hasConcept C97137747 @default.
- W3212260380 hasConceptScore W3212260380C110158866 @default.
- W3212260380 hasConceptScore W3212260380C112964050 @default.
- W3212260380 hasConceptScore W3212260380C118518473 @default.
- W3212260380 hasConceptScore W3212260380C130217890 @default.
- W3212260380 hasConceptScore W3212260380C132651083 @default.
- W3212260380 hasConceptScore W3212260380C144024400 @default.
- W3212260380 hasConceptScore W3212260380C149207113 @default.
- W3212260380 hasConceptScore W3212260380C149923435 @default.
- W3212260380 hasConceptScore W3212260380C153823671 @default.
- W3212260380 hasConceptScore W3212260380C166957645 @default.
- W3212260380 hasConceptScore W3212260380C176205827 @default.
- W3212260380 hasConceptScore W3212260380C18903297 @default.