Matches in SemOpenAlex for { <https://semopenalex.org/work/W3212275538> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3212275538 abstract "Network inference is a valuable approach for gaining mechanistic insight from high-dimensional biological data. Existing methods for network inference focus on ranking all possible relations (edges) among all measured quantities such as genes, proteins, metabolites (features) observed, which yields a dense network that is challenging to interpret. Identifying a sparse, interpretable network using these methods thus requires an error-prone thresholding step which compromises their performance. In this article we propose a new method, DEKER-NET, that addresses this limitation by directly identifying a sparse, interpretable network without thresholding, improving real-world performance. DEKER-NET uses a novel machine learning method for feature selection in an iterative framework for network inference. DEKER-NET is extremely flexible, handling linear and nonlinear relations while making no assumptions about the underlying distribution of data, and is suitable for categorical or continuous variables. We test our method on the Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge data, demonstrating that it can directly identify sparse, interpretable networks without thresholding while maintaining performance comparable to the hypothetical best-case thresholded network of other methods." @default.
- W3212275538 created "2021-11-22" @default.
- W3212275538 creator A5021432816 @default.
- W3212275538 creator A5046403446 @default.
- W3212275538 creator A5049190947 @default.
- W3212275538 date "2021-11-17" @default.
- W3212275538 modified "2023-09-25" @default.
- W3212275538 title "From complex data to biological insight: ‘DEKER’ feature selection and network inference" @default.
- W3212275538 cites W1974511160 @default.
- W3212275538 cites W1986688807 @default.
- W3212275538 cites W2005126631 @default.
- W3212275538 cites W2023348596 @default.
- W3212275538 cites W2033174637 @default.
- W3212275538 cites W2056983531 @default.
- W3212275538 cites W2058815839 @default.
- W3212275538 cites W2076513103 @default.
- W3212275538 cites W2082988498 @default.
- W3212275538 cites W2106555403 @default.
- W3212275538 cites W2109384743 @default.
- W3212275538 cites W2139997707 @default.
- W3212275538 cites W2143908786 @default.
- W3212275538 cites W2147898188 @default.
- W3212275538 cites W2153491803 @default.
- W3212275538 cites W2168175751 @default.
- W3212275538 cites W2395005906 @default.
- W3212275538 cites W2515922456 @default.
- W3212275538 cites W2561978773 @default.
- W3212275538 cites W2806820858 @default.
- W3212275538 cites W2810548302 @default.
- W3212275538 cites W2886541918 @default.
- W3212275538 cites W2911964244 @default.
- W3212275538 cites W3046989601 @default.
- W3212275538 cites W4252003911 @default.
- W3212275538 doi "https://doi.org/10.1007/s10928-021-09792-7" @default.
- W3212275538 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34791577" @default.
- W3212275538 hasPublicationYear "2021" @default.
- W3212275538 type Work @default.
- W3212275538 sameAs 3212275538 @default.
- W3212275538 citedByCount "2" @default.
- W3212275538 countsByYear W32122755382022 @default.
- W3212275538 crossrefType "journal-article" @default.
- W3212275538 hasAuthorship W3212275538A5021432816 @default.
- W3212275538 hasAuthorship W3212275538A5046403446 @default.
- W3212275538 hasAuthorship W3212275538A5049190947 @default.
- W3212275538 hasBestOaLocation W32122755381 @default.
- W3212275538 hasConcept C115961682 @default.
- W3212275538 hasConcept C119857082 @default.
- W3212275538 hasConcept C124101348 @default.
- W3212275538 hasConcept C138885662 @default.
- W3212275538 hasConcept C148483581 @default.
- W3212275538 hasConcept C153180895 @default.
- W3212275538 hasConcept C154945302 @default.
- W3212275538 hasConcept C189430467 @default.
- W3212275538 hasConcept C191178318 @default.
- W3212275538 hasConcept C2776214188 @default.
- W3212275538 hasConcept C2776401178 @default.
- W3212275538 hasConcept C41008148 @default.
- W3212275538 hasConcept C41895202 @default.
- W3212275538 hasConcept C5274069 @default.
- W3212275538 hasConceptScore W3212275538C115961682 @default.
- W3212275538 hasConceptScore W3212275538C119857082 @default.
- W3212275538 hasConceptScore W3212275538C124101348 @default.
- W3212275538 hasConceptScore W3212275538C138885662 @default.
- W3212275538 hasConceptScore W3212275538C148483581 @default.
- W3212275538 hasConceptScore W3212275538C153180895 @default.
- W3212275538 hasConceptScore W3212275538C154945302 @default.
- W3212275538 hasConceptScore W3212275538C189430467 @default.
- W3212275538 hasConceptScore W3212275538C191178318 @default.
- W3212275538 hasConceptScore W3212275538C2776214188 @default.
- W3212275538 hasConceptScore W3212275538C2776401178 @default.
- W3212275538 hasConceptScore W3212275538C41008148 @default.
- W3212275538 hasConceptScore W3212275538C41895202 @default.
- W3212275538 hasConceptScore W3212275538C5274069 @default.
- W3212275538 hasLocation W32122755381 @default.
- W3212275538 hasLocation W32122755382 @default.
- W3212275538 hasLocation W32122755383 @default.
- W3212275538 hasOpenAccess W3212275538 @default.
- W3212275538 hasPrimaryLocation W32122755381 @default.
- W3212275538 hasRelatedWork W2033000528 @default.
- W3212275538 hasRelatedWork W2052253960 @default.
- W3212275538 hasRelatedWork W2354804986 @default.
- W3212275538 hasRelatedWork W2396188393 @default.
- W3212275538 hasRelatedWork W2792520941 @default.
- W3212275538 hasRelatedWork W2884983377 @default.
- W3212275538 hasRelatedWork W3175271736 @default.
- W3212275538 hasRelatedWork W4212852473 @default.
- W3212275538 hasRelatedWork W4225360065 @default.
- W3212275538 hasRelatedWork W4226084447 @default.
- W3212275538 isParatext "false" @default.
- W3212275538 isRetracted "false" @default.
- W3212275538 magId "3212275538" @default.
- W3212275538 workType "article" @default.