Matches in SemOpenAlex for { <https://semopenalex.org/work/W3212345114> ?p ?o ?g. }
- W3212345114 endingPage "139" @default.
- W3212345114 startingPage "129" @default.
- W3212345114 abstract "The Pentagon Drawing Test (PDT) is a common assessment for visuospatial function. Evaluating the PDT by artificial intelligence can improve efficiency and reliability in the big data era. This study aimed to develop a deep learning (DL) framework for automatic scoring of the PDT based on image data.A total of 823 PDT photos were retrospectively collected and preprocessed into black-and-white, square-shape images. Stratified fivefold cross-validation was applied for training and testing. Two strategies based on convolutional neural networks were compared. The first strategy was to perform an image classification task using supervised transfer learning. The second strategy was designed with an object detection model for recognizing the geometric shapes in the figure, followed by a predetermined algorithm to score based on their classes and positions.On average, the first framework demonstrated 62%accuracy, 62%recall, 65%precision, 63%specificity, and 0.72 area under the receiver operating characteristic curve. This performance was substantially outperformed by the second framework, with averages of 94%, 95%, 93%, 93%, and 0.95, respectively.An image-based DL framework based on the object detection approach may be clinically applicable for automatic scoring of the PDT with high efficiency and reliability. With a limited sample size, transfer learning should be used with caution if the new images are distinct from the previous training data. Partitioning the problem-solving workflow into multiple simple tasks should facilitate model selection, improve performance, and allow comprehensible logic of the DL framework." @default.
- W3212345114 created "2021-11-22" @default.
- W3212345114 creator A5020492948 @default.
- W3212345114 creator A5021103064 @default.
- W3212345114 creator A5060352114 @default.
- W3212345114 date "2022-01-04" @default.
- W3212345114 modified "2023-10-05" @default.
- W3212345114 title "Developing an Image-Based Deep Learning Framework for Automatic Scoring of the Pentagon Drawing Test" @default.
- W3212345114 cites W1634103061 @default.
- W3212345114 cites W1847168837 @default.
- W3212345114 cites W1980732041 @default.
- W3212345114 cites W1987804548 @default.
- W3212345114 cites W2005274707 @default.
- W3212345114 cites W2007665262 @default.
- W3212345114 cites W2081819430 @default.
- W3212345114 cites W2116814453 @default.
- W3212345114 cites W2125514691 @default.
- W3212345114 cites W2161487667 @default.
- W3212345114 cites W2168268980 @default.
- W3212345114 cites W2168495229 @default.
- W3212345114 cites W2319185742 @default.
- W3212345114 cites W2760946358 @default.
- W3212345114 cites W2797059050 @default.
- W3212345114 cites W2855416235 @default.
- W3212345114 cites W2885642017 @default.
- W3212345114 cites W2886281300 @default.
- W3212345114 cites W2902644322 @default.
- W3212345114 cites W2905810301 @default.
- W3212345114 cites W2909494862 @default.
- W3212345114 cites W2919115771 @default.
- W3212345114 cites W2982580298 @default.
- W3212345114 cites W3006842394 @default.
- W3212345114 cites W3015714982 @default.
- W3212345114 cites W3038835370 @default.
- W3212345114 cites W3039199168 @default.
- W3212345114 cites W3105153358 @default.
- W3212345114 cites W3109437785 @default.
- W3212345114 cites W3110000878 @default.
- W3212345114 cites W3115999170 @default.
- W3212345114 cites W3155436984 @default.
- W3212345114 cites W3169384804 @default.
- W3212345114 cites W3174491732 @default.
- W3212345114 cites W3192490646 @default.
- W3212345114 cites W4206238295 @default.
- W3212345114 cites W4214831140 @default.
- W3212345114 doi "https://doi.org/10.3233/jad-210714" @default.
- W3212345114 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34776440" @default.
- W3212345114 hasPublicationYear "2022" @default.
- W3212345114 type Work @default.
- W3212345114 sameAs 3212345114 @default.
- W3212345114 citedByCount "8" @default.
- W3212345114 countsByYear W32123451142022 @default.
- W3212345114 countsByYear W32123451142023 @default.
- W3212345114 crossrefType "journal-article" @default.
- W3212345114 hasAuthorship W3212345114A5020492948 @default.
- W3212345114 hasAuthorship W3212345114A5021103064 @default.
- W3212345114 hasAuthorship W3212345114A5060352114 @default.
- W3212345114 hasConcept C108583219 @default.
- W3212345114 hasConcept C115961682 @default.
- W3212345114 hasConcept C119857082 @default.
- W3212345114 hasConcept C121332964 @default.
- W3212345114 hasConcept C150899416 @default.
- W3212345114 hasConcept C153180895 @default.
- W3212345114 hasConcept C154945302 @default.
- W3212345114 hasConcept C162324750 @default.
- W3212345114 hasConcept C163258240 @default.
- W3212345114 hasConcept C185592680 @default.
- W3212345114 hasConcept C187736073 @default.
- W3212345114 hasConcept C198531522 @default.
- W3212345114 hasConcept C2776151529 @default.
- W3212345114 hasConcept C2780451532 @default.
- W3212345114 hasConcept C2781238097 @default.
- W3212345114 hasConcept C41008148 @default.
- W3212345114 hasConcept C43214815 @default.
- W3212345114 hasConcept C43617362 @default.
- W3212345114 hasConcept C58471807 @default.
- W3212345114 hasConcept C62520636 @default.
- W3212345114 hasConcept C81363708 @default.
- W3212345114 hasConceptScore W3212345114C108583219 @default.
- W3212345114 hasConceptScore W3212345114C115961682 @default.
- W3212345114 hasConceptScore W3212345114C119857082 @default.
- W3212345114 hasConceptScore W3212345114C121332964 @default.
- W3212345114 hasConceptScore W3212345114C150899416 @default.
- W3212345114 hasConceptScore W3212345114C153180895 @default.
- W3212345114 hasConceptScore W3212345114C154945302 @default.
- W3212345114 hasConceptScore W3212345114C162324750 @default.
- W3212345114 hasConceptScore W3212345114C163258240 @default.
- W3212345114 hasConceptScore W3212345114C185592680 @default.
- W3212345114 hasConceptScore W3212345114C187736073 @default.
- W3212345114 hasConceptScore W3212345114C198531522 @default.
- W3212345114 hasConceptScore W3212345114C2776151529 @default.
- W3212345114 hasConceptScore W3212345114C2780451532 @default.
- W3212345114 hasConceptScore W3212345114C2781238097 @default.
- W3212345114 hasConceptScore W3212345114C41008148 @default.
- W3212345114 hasConceptScore W3212345114C43214815 @default.
- W3212345114 hasConceptScore W3212345114C43617362 @default.
- W3212345114 hasConceptScore W3212345114C58471807 @default.
- W3212345114 hasConceptScore W3212345114C62520636 @default.