Matches in SemOpenAlex for { <https://semopenalex.org/work/W3212457584> ?p ?o ?g. }
- W3212457584 endingPage "151633" @default.
- W3212457584 startingPage "151633" @default.
- W3212457584 abstract "Little is currently known about long-term health effects of ambient ultrafine particles (UFPs) due to the lack of exposure assessment metrics suitable for use in large population-based studies. Land use regression (LUR) models have been used increasingly for modeling small-scale spatial variation in UFPs concentrations in European and American, but have never been applied in developing countries with heavy air pollution. This study developed a land-use regression (LUR) model for UFP exposure assessment in Shanghai, a typic mega city of China, where dense population resides. A 30-minute measurement of particle number concentrations of UFPs was collected at each visit at 144 fixed sites, and each was visited three times in each season of winter, spring, and summer. The annual adjusted average was calculated and regressed against pre-selected geographic information system-derived predictor variables using a stepwise variable selection method. The final LUR model explained 69% of the spatial variability in UFP with a root mean square error of 6008 particles cm−3. The 10-fold cross validation R2 reached 0.68, revealing the robustness of the model. The final predictors included traffic-related NOx emissions, number of restaurants, building footprint area, and distance to the nearest national road. These predictors were within a relatively small buffer size, ranging from 50 m to 100 m, indicating great spatial variations of UFP particle number concentration and the need of high-resolution models for UFP exposure assessment in urban areas. We concluded that based on a purpose-designed short-term monitoring network, LUR model can be applied to predict UFPs spatial surface in a mega city of China. Majority of the spatial variability in the annual mean of ambient UFP was explained in the model comprised primarily of traffic-, building-, and restaurant-related predictors." @default.
- W3212457584 created "2021-11-22" @default.
- W3212457584 creator A5005278108 @default.
- W3212457584 creator A5011186413 @default.
- W3212457584 creator A5014147821 @default.
- W3212457584 creator A5016724482 @default.
- W3212457584 creator A5021393257 @default.
- W3212457584 creator A5028112024 @default.
- W3212457584 creator A5043445202 @default.
- W3212457584 creator A5064968910 @default.
- W3212457584 creator A5073941796 @default.
- W3212457584 creator A5082142226 @default.
- W3212457584 date "2022-04-01" @default.
- W3212457584 modified "2023-10-14" @default.
- W3212457584 title "High spatial resolution land-use regression model for urban ultrafine particle exposure assessment in Shanghai, China" @default.
- W3212457584 cites W1031755323 @default.
- W3212457584 cites W1528228139 @default.
- W3212457584 cites W1965290061 @default.
- W3212457584 cites W2023377202 @default.
- W3212457584 cites W2025095419 @default.
- W3212457584 cites W2027068370 @default.
- W3212457584 cites W2030448148 @default.
- W3212457584 cites W2053255375 @default.
- W3212457584 cites W2066544083 @default.
- W3212457584 cites W2077915483 @default.
- W3212457584 cites W2078732381 @default.
- W3212457584 cites W2081068945 @default.
- W3212457584 cites W2084554826 @default.
- W3212457584 cites W2088971169 @default.
- W3212457584 cites W2120528024 @default.
- W3212457584 cites W2149160726 @default.
- W3212457584 cites W2161044029 @default.
- W3212457584 cites W2171386123 @default.
- W3212457584 cites W2209427089 @default.
- W3212457584 cites W2267443514 @default.
- W3212457584 cites W2295419512 @default.
- W3212457584 cites W2316634239 @default.
- W3212457584 cites W2325282659 @default.
- W3212457584 cites W2335211497 @default.
- W3212457584 cites W2339392509 @default.
- W3212457584 cites W2352017734 @default.
- W3212457584 cites W2542147467 @default.
- W3212457584 cites W2546950881 @default.
- W3212457584 cites W2558147113 @default.
- W3212457584 cites W2591459739 @default.
- W3212457584 cites W2592033489 @default.
- W3212457584 cites W2594967439 @default.
- W3212457584 cites W2753495494 @default.
- W3212457584 cites W2766033931 @default.
- W3212457584 cites W2788541899 @default.
- W3212457584 cites W2947620908 @default.
- W3212457584 cites W2972089754 @default.
- W3212457584 cites W2999406896 @default.
- W3212457584 cites W3003011526 @default.
- W3212457584 cites W3035556304 @default.
- W3212457584 doi "https://doi.org/10.1016/j.scitotenv.2021.151633" @default.
- W3212457584 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34785221" @default.
- W3212457584 hasPublicationYear "2022" @default.
- W3212457584 type Work @default.
- W3212457584 sameAs 3212457584 @default.
- W3212457584 citedByCount "7" @default.
- W3212457584 countsByYear W32124575842022 @default.
- W3212457584 countsByYear W32124575842023 @default.
- W3212457584 crossrefType "journal-article" @default.
- W3212457584 hasAuthorship W3212457584A5005278108 @default.
- W3212457584 hasAuthorship W3212457584A5011186413 @default.
- W3212457584 hasAuthorship W3212457584A5014147821 @default.
- W3212457584 hasAuthorship W3212457584A5016724482 @default.
- W3212457584 hasAuthorship W3212457584A5021393257 @default.
- W3212457584 hasAuthorship W3212457584A5028112024 @default.
- W3212457584 hasAuthorship W3212457584A5043445202 @default.
- W3212457584 hasAuthorship W3212457584A5064968910 @default.
- W3212457584 hasAuthorship W3212457584A5073941796 @default.
- W3212457584 hasAuthorship W3212457584A5082142226 @default.
- W3212457584 hasConcept C100970517 @default.
- W3212457584 hasConcept C105795698 @default.
- W3212457584 hasConcept C127313418 @default.
- W3212457584 hasConcept C127413603 @default.
- W3212457584 hasConcept C150032891 @default.
- W3212457584 hasConcept C152877465 @default.
- W3212457584 hasConcept C153294291 @default.
- W3212457584 hasConcept C178790620 @default.
- W3212457584 hasConcept C185592680 @default.
- W3212457584 hasConcept C198408306 @default.
- W3212457584 hasConcept C205649164 @default.
- W3212457584 hasConcept C2908647359 @default.
- W3212457584 hasConcept C33923547 @default.
- W3212457584 hasConcept C39432304 @default.
- W3212457584 hasConcept C42360764 @default.
- W3212457584 hasConcept C48921125 @default.
- W3212457584 hasConcept C559116025 @default.
- W3212457584 hasConcept C71924100 @default.
- W3212457584 hasConcept C91586092 @default.
- W3212457584 hasConcept C94747663 @default.
- W3212457584 hasConcept C99454951 @default.
- W3212457584 hasConceptScore W3212457584C100970517 @default.
- W3212457584 hasConceptScore W3212457584C105795698 @default.
- W3212457584 hasConceptScore W3212457584C127313418 @default.