Matches in SemOpenAlex for { <https://semopenalex.org/work/W3212526843> ?p ?o ?g. }
- W3212526843 endingPage "e31618" @default.
- W3212526843 startingPage "e31618" @default.
- W3212526843 abstract "There is a growing interest in using person-generated wearable device data for biomedical research, but there are also concerns regarding the quality of data such as missing or incorrect data. This emphasizes the importance of assessing data quality before conducting research. In order to perform data quality assessments, it is essential to define what data quality means for person-generated wearable device data by identifying the data quality dimensions.This study aims to identify data quality dimensions for person-generated wearable device data for research purposes.This study was conducted in 3 phases: literature review, survey, and focus group discussion. The literature review was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guideline to identify factors affecting data quality and its associated data quality challenges. In addition, we conducted a survey to confirm and complement results from the literature review and to understand researchers' perceptions on data quality dimensions that were previously identified as dimensions for the secondary use of electronic health record (EHR) data. We sent the survey to researchers with experience in analyzing wearable device data. Focus group discussion sessions were conducted with domain experts to derive data quality dimensions for person-generated wearable device data. On the basis of the results from the literature review and survey, a facilitator proposed potential data quality dimensions relevant to person-generated wearable device data, and the domain experts accepted or rejected the suggested dimensions.In total, 19 studies were included in the literature review, and 3 major themes emerged: device- and technical-related, user-related, and data governance-related factors. The associated data quality problems were incomplete data, incorrect data, and heterogeneous data. A total of 20 respondents answered the survey. The major data quality challenges faced by researchers were completeness, accuracy, and plausibility. The importance ratings on data quality dimensions in an existing framework showed that the dimensions for secondary use of EHR data are applicable to person-generated wearable device data. There were 3 focus group sessions with domain experts in data quality and wearable device research. The experts concluded that intrinsic data quality features, such as conformance, completeness, and plausibility, and contextual and fitness-for-use data quality features, such as completeness (breadth and density) and temporal data granularity, are important data quality dimensions for assessing person-generated wearable device data for research purposes.In this study, intrinsic and contextual and fitness-for-use data quality dimensions for person-generated wearable device data were identified. The dimensions were adapted from data quality terminologies and frameworks for the secondary use of EHR data with a few modifications. Further research on how data quality can be assessed with respect to each dimension is needed." @default.
- W3212526843 created "2021-11-22" @default.
- W3212526843 creator A5009604048 @default.
- W3212526843 creator A5030136150 @default.
- W3212526843 creator A5060507817 @default.
- W3212526843 creator A5080516734 @default.
- W3212526843 date "2021-12-23" @default.
- W3212526843 modified "2023-10-16" @default.
- W3212526843 title "Identifying Data Quality Dimensions for Person-Generated Wearable Device Data: Multi-Method Study" @default.
- W3212526843 cites W1567491469 @default.
- W3212526843 cites W1865128887 @default.
- W3212526843 cites W1963848984 @default.
- W3212526843 cites W2018025378 @default.
- W3212526843 cites W2026568525 @default.
- W3212526843 cites W2099521439 @default.
- W3212526843 cites W2121532663 @default.
- W3212526843 cites W2158939484 @default.
- W3212526843 cites W2236421841 @default.
- W3212526843 cites W2405768559 @default.
- W3212526843 cites W2416980823 @default.
- W3212526843 cites W2481159763 @default.
- W3212526843 cites W2518786827 @default.
- W3212526843 cites W2605591258 @default.
- W3212526843 cites W2739417783 @default.
- W3212526843 cites W2754352718 @default.
- W3212526843 cites W2765919240 @default.
- W3212526843 cites W2775554754 @default.
- W3212526843 cites W2787945643 @default.
- W3212526843 cites W2791183738 @default.
- W3212526843 cites W2792479193 @default.
- W3212526843 cites W2794859034 @default.
- W3212526843 cites W2800174936 @default.
- W3212526843 cites W2937163053 @default.
- W3212526843 cites W2948756736 @default.
- W3212526843 cites W3021563681 @default.
- W3212526843 cites W3131883848 @default.
- W3212526843 doi "https://doi.org/10.2196/31618" @default.
- W3212526843 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34941540" @default.
- W3212526843 hasPublicationYear "2021" @default.
- W3212526843 type Work @default.
- W3212526843 sameAs 3212526843 @default.
- W3212526843 citedByCount "5" @default.
- W3212526843 countsByYear W32125268432022 @default.
- W3212526843 countsByYear W32125268432023 @default.
- W3212526843 crossrefType "journal-article" @default.
- W3212526843 hasAuthorship W3212526843A5009604048 @default.
- W3212526843 hasAuthorship W3212526843A5030136150 @default.
- W3212526843 hasAuthorship W3212526843A5060507817 @default.
- W3212526843 hasAuthorship W3212526843A5080516734 @default.
- W3212526843 hasBestOaLocation W32125268431 @default.
- W3212526843 hasConcept C105795698 @default.
- W3212526843 hasConcept C111472728 @default.
- W3212526843 hasConcept C127413603 @default.
- W3212526843 hasConcept C133462117 @default.
- W3212526843 hasConcept C138885662 @default.
- W3212526843 hasConcept C144133560 @default.
- W3212526843 hasConcept C149635348 @default.
- W3212526843 hasConcept C150594956 @default.
- W3212526843 hasConcept C15744967 @default.
- W3212526843 hasConcept C162853370 @default.
- W3212526843 hasConcept C176217482 @default.
- W3212526843 hasConcept C21547014 @default.
- W3212526843 hasConcept C24756922 @default.
- W3212526843 hasConcept C2522767166 @default.
- W3212526843 hasConcept C2776831358 @default.
- W3212526843 hasConcept C2779530757 @default.
- W3212526843 hasConcept C33923547 @default.
- W3212526843 hasConcept C41008148 @default.
- W3212526843 hasConcept C54290928 @default.
- W3212526843 hasConcept C56995899 @default.
- W3212526843 hasConcept C77805123 @default.
- W3212526843 hasConceptScore W3212526843C105795698 @default.
- W3212526843 hasConceptScore W3212526843C111472728 @default.
- W3212526843 hasConceptScore W3212526843C127413603 @default.
- W3212526843 hasConceptScore W3212526843C133462117 @default.
- W3212526843 hasConceptScore W3212526843C138885662 @default.
- W3212526843 hasConceptScore W3212526843C144133560 @default.
- W3212526843 hasConceptScore W3212526843C149635348 @default.
- W3212526843 hasConceptScore W3212526843C150594956 @default.
- W3212526843 hasConceptScore W3212526843C15744967 @default.
- W3212526843 hasConceptScore W3212526843C162853370 @default.
- W3212526843 hasConceptScore W3212526843C176217482 @default.
- W3212526843 hasConceptScore W3212526843C21547014 @default.
- W3212526843 hasConceptScore W3212526843C24756922 @default.
- W3212526843 hasConceptScore W3212526843C2522767166 @default.
- W3212526843 hasConceptScore W3212526843C2776831358 @default.
- W3212526843 hasConceptScore W3212526843C2779530757 @default.
- W3212526843 hasConceptScore W3212526843C33923547 @default.
- W3212526843 hasConceptScore W3212526843C41008148 @default.
- W3212526843 hasConceptScore W3212526843C54290928 @default.
- W3212526843 hasConceptScore W3212526843C56995899 @default.
- W3212526843 hasConceptScore W3212526843C77805123 @default.
- W3212526843 hasIssue "12" @default.
- W3212526843 hasLocation W32125268431 @default.
- W3212526843 hasLocation W32125268432 @default.
- W3212526843 hasLocation W32125268433 @default.
- W3212526843 hasOpenAccess W3212526843 @default.
- W3212526843 hasPrimaryLocation W32125268431 @default.