Matches in SemOpenAlex for { <https://semopenalex.org/work/W3212572034> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3212572034 abstract "Humans are vivacious and obstinate in that they are plagued by a constant need to be motile and sprightly which gives us a goldmine of data to work on. This constant stream of ever-changing activities performed by us could be dissected fastidiously to gain insight into the specifications of that activity. This could spur the use of IoT, automated devices and real-time monitoring. A variety of techniques some of which are video camera feeds which could be sourced from CCTVS and sensors, could be put to use to efficaciously procure data. This paper will delve into the various techniques proposed by various researchers and compare their performance on various deep learning and machine learning models to analyse them intrinsically. We will also showcase our own model consisting of the use of a 3D tempo-spatial dataset called the UCI-HAR dataset employing various deep learning models like LSTM, SVMs and more. The deep learning model will be improved upon by architectural and hyper parameter improvements. Other sections will discuss the related works including the datasets used in Human Activity Recognition. Also contained in the discussion section are the technicalities of the papers like the accuracy and the relevancy of the deep learning models being used. A proposed hybrid models using both video feed and sensor data for recognition will be floated. A panoply of industries including the health and defence sectors stand to gain from the rapid recognition of human activities." @default.
- W3212572034 created "2021-11-22" @default.
- W3212572034 creator A5003086301 @default.
- W3212572034 creator A5005446354 @default.
- W3212572034 creator A5035400396 @default.
- W3212572034 creator A5085056326 @default.
- W3212572034 date "2021-08-05" @default.
- W3212572034 modified "2023-09-25" @default.
- W3212572034 title "The Variegated Applications of Deep Learning Techniques in Human Activity Recognition" @default.
- W3212572034 cites W1975995839 @default.
- W3212572034 cites W2072070523 @default.
- W3212572034 cites W2235034809 @default.
- W3212572034 cites W2259894667 @default.
- W3212572034 cites W2296311849 @default.
- W3212572034 cites W2307770531 @default.
- W3212572034 cites W2342792048 @default.
- W3212572034 cites W2507376018 @default.
- W3212572034 cites W2562935526 @default.
- W3212572034 cites W2736191430 @default.
- W3212572034 cites W2736743121 @default.
- W3212572034 cites W2754147157 @default.
- W3212572034 cites W2759690896 @default.
- W3212572034 cites W2761268027 @default.
- W3212572034 cites W2795342689 @default.
- W3212572034 cites W2893019778 @default.
- W3212572034 cites W2893511508 @default.
- W3212572034 cites W2895360809 @default.
- W3212572034 cites W2895495973 @default.
- W3212572034 cites W2898697096 @default.
- W3212572034 cites W2899076796 @default.
- W3212572034 cites W2906824433 @default.
- W3212572034 cites W2923336951 @default.
- W3212572034 cites W2946490545 @default.
- W3212572034 cites W2958492098 @default.
- W3212572034 cites W2962934715 @default.
- W3212572034 cites W2963434542 @default.
- W3212572034 cites W2971387592 @default.
- W3212572034 cites W2980950444 @default.
- W3212572034 cites W2989064674 @default.
- W3212572034 cites W2998376881 @default.
- W3212572034 cites W3003728340 @default.
- W3212572034 cites W3015505405 @default.
- W3212572034 cites W3034435444 @default.
- W3212572034 cites W3041181596 @default.
- W3212572034 cites W3046656208 @default.
- W3212572034 cites W3084545782 @default.
- W3212572034 cites W3085218293 @default.
- W3212572034 cites W3155622457 @default.
- W3212572034 cites W3173747377 @default.
- W3212572034 cites W4214862257 @default.
- W3212572034 doi "https://doi.org/10.1145/3474124.3474156" @default.
- W3212572034 hasPublicationYear "2021" @default.
- W3212572034 type Work @default.
- W3212572034 sameAs 3212572034 @default.
- W3212572034 citedByCount "2" @default.
- W3212572034 countsByYear W32125720342022 @default.
- W3212572034 crossrefType "proceedings-article" @default.
- W3212572034 hasAuthorship W3212572034A5003086301 @default.
- W3212572034 hasAuthorship W3212572034A5005446354 @default.
- W3212572034 hasAuthorship W3212572034A5035400396 @default.
- W3212572034 hasAuthorship W3212572034A5085056326 @default.
- W3212572034 hasConcept C108583219 @default.
- W3212572034 hasConcept C119857082 @default.
- W3212572034 hasConcept C121687571 @default.
- W3212572034 hasConcept C154945302 @default.
- W3212572034 hasConcept C2522767166 @default.
- W3212572034 hasConcept C41008148 @default.
- W3212572034 hasConcept C67186912 @default.
- W3212572034 hasConcept C77088390 @default.
- W3212572034 hasConceptScore W3212572034C108583219 @default.
- W3212572034 hasConceptScore W3212572034C119857082 @default.
- W3212572034 hasConceptScore W3212572034C121687571 @default.
- W3212572034 hasConceptScore W3212572034C154945302 @default.
- W3212572034 hasConceptScore W3212572034C2522767166 @default.
- W3212572034 hasConceptScore W3212572034C41008148 @default.
- W3212572034 hasConceptScore W3212572034C67186912 @default.
- W3212572034 hasConceptScore W3212572034C77088390 @default.
- W3212572034 hasLocation W32125720341 @default.
- W3212572034 hasOpenAccess W3212572034 @default.
- W3212572034 hasPrimaryLocation W32125720341 @default.
- W3212572034 hasRelatedWork W2922569945 @default.
- W3212572034 hasRelatedWork W3135542633 @default.
- W3212572034 hasRelatedWork W3198777052 @default.
- W3212572034 hasRelatedWork W4223943233 @default.
- W3212572034 hasRelatedWork W4225161397 @default.
- W3212572034 hasRelatedWork W4281386417 @default.
- W3212572034 hasRelatedWork W4309045103 @default.
- W3212572034 hasRelatedWork W4312200629 @default.
- W3212572034 hasRelatedWork W4360585206 @default.
- W3212572034 hasRelatedWork W4364306694 @default.
- W3212572034 isParatext "false" @default.
- W3212572034 isRetracted "false" @default.
- W3212572034 magId "3212572034" @default.
- W3212572034 workType "article" @default.