Matches in SemOpenAlex for { <https://semopenalex.org/work/W3212604410> ?p ?o ?g. }
- W3212604410 endingPage "3298" @default.
- W3212604410 startingPage "3279" @default.
- W3212604410 abstract "Attention is an important mechanism that can be employed for a variety of deep learning models across many different domains and tasks. This survey provides an overview of the most important attention mechanisms proposed in the literature. The various attention mechanisms are explained by means of a framework consisting of a general attention model, uniform notation, and a comprehensive taxonomy of attention mechanisms. Furthermore, the various measures for evaluating attention models are reviewed, and methods to characterize the structure of attention models based on the proposed framework are discussed. Last, future work in the field of attention models is considered." @default.
- W3212604410 created "2021-11-22" @default.
- W3212604410 creator A5039212271 @default.
- W3212604410 creator A5044867921 @default.
- W3212604410 date "2023-04-01" @default.
- W3212604410 modified "2023-10-17" @default.
- W3212604410 title "A General Survey on Attention Mechanisms in Deep Learning" @default.
- W3212604410 cites W1507177964 @default.
- W3212604410 cites W1902237438 @default.
- W3212604410 cites W2092583831 @default.
- W3212604410 cites W2119717200 @default.
- W3212604410 cites W2137901323 @default.
- W3212604410 cites W2470673105 @default.
- W3212604410 cites W2526425061 @default.
- W3212604410 cites W2560311620 @default.
- W3212604410 cites W2562607067 @default.
- W3212604410 cites W2584185835 @default.
- W3212604410 cites W2594990650 @default.
- W3212604410 cites W2604490051 @default.
- W3212604410 cites W2739107216 @default.
- W3212604410 cites W2739918945 @default.
- W3212604410 cites W2741252866 @default.
- W3212604410 cites W2745461083 @default.
- W3212604410 cites W2749348810 @default.
- W3212604410 cites W2788347302 @default.
- W3212604410 cites W2788701627 @default.
- W3212604410 cites W2788810909 @default.
- W3212604410 cites W2798693700 @default.
- W3212604410 cites W2799014768 @default.
- W3212604410 cites W2808310571 @default.
- W3212604410 cites W2885380450 @default.
- W3212604410 cites W2889638513 @default.
- W3212604410 cites W2890952074 @default.
- W3212604410 cites W2891451067 @default.
- W3212604410 cites W2891778157 @default.
- W3212604410 cites W2904452845 @default.
- W3212604410 cites W2905524945 @default.
- W3212604410 cites W2911291251 @default.
- W3212604410 cites W2913023375 @default.
- W3212604410 cites W2914278227 @default.
- W3212604410 cites W2914713622 @default.
- W3212604410 cites W2937584914 @default.
- W3212604410 cites W2945830819 @default.
- W3212604410 cites W2950023669 @default.
- W3212604410 cites W2950090767 @default.
- W3212604410 cites W2951586423 @default.
- W3212604410 cites W2951682790 @default.
- W3212604410 cites W2962729168 @default.
- W3212604410 cites W2962762462 @default.
- W3212604410 cites W2962826786 @default.
- W3212604410 cites W2962884579 @default.
- W3212604410 cites W2963122061 @default.
- W3212604410 cites W2963351113 @default.
- W3212604410 cites W2963532813 @default.
- W3212604410 cites W2963630207 @default.
- W3212604410 cites W2963668762 @default.
- W3212604410 cites W2963680249 @default.
- W3212604410 cites W2963954913 @default.
- W3212604410 cites W2964110616 @default.
- W3212604410 cites W2964164368 @default.
- W3212604410 cites W2964189376 @default.
- W3212604410 cites W2964199361 @default.
- W3212604410 cites W2969262604 @default.
- W3212604410 cites W2970126578 @default.
- W3212604410 cites W2970431814 @default.
- W3212604410 cites W2970726176 @default.
- W3212604410 cites W2970793364 @default.
- W3212604410 cites W2972369255 @default.
- W3212604410 cites W2976445585 @default.
- W3212604410 cites W2981330198 @default.
- W3212604410 cites W2984100107 @default.
- W3212604410 cites W2987119394 @default.
- W3212604410 cites W2998116985 @default.
- W3212604410 cites W2998228050 @default.
- W3212604410 cites W2998367975 @default.
- W3212604410 cites W3003940182 @default.
- W3212604410 cites W3014076136 @default.
- W3212604410 cites W3017153481 @default.
- W3212604410 cites W3017402509 @default.
- W3212604410 cites W3034655362 @default.
- W3212604410 cites W3034885317 @default.
- W3212604410 cites W3035281110 @default.
- W3212604410 cites W3092198864 @default.
- W3212604410 cites W3098325931 @default.
- W3212604410 cites W3100921056 @default.
- W3212604410 cites W3102632104 @default.
- W3212604410 cites W3152368098 @default.
- W3212604410 cites W3208624098 @default.
- W3212604410 doi "https://doi.org/10.1109/tkde.2021.3126456" @default.
- W3212604410 hasPublicationYear "2023" @default.
- W3212604410 type Work @default.
- W3212604410 sameAs 3212604410 @default.
- W3212604410 citedByCount "48" @default.
- W3212604410 countsByYear W32126044102022 @default.
- W3212604410 countsByYear W32126044102023 @default.
- W3212604410 crossrefType "journal-article" @default.
- W3212604410 hasAuthorship W3212604410A5039212271 @default.
- W3212604410 hasAuthorship W3212604410A5044867921 @default.