Matches in SemOpenAlex for { <https://semopenalex.org/work/W3212608725> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3212608725 abstract "Crop and disease classification is one of the important problems in automation of agricultural processes with multi-cropping method where the field is cultivated with more than one crop. In order to solve this classification problem, a study has been carried out in the field cultivating eggplant (Solanum melongena) and tomato (Solanum lycopersicum) using the images obtained from a mobile phone camera. Textural descriptors namely contrast, correlation, energy and homogeneity were extracted from the gray-scale converted RGB image for crop identification, i.e., (tomato or eggplant) and the same descriptors were extracted from the gray-scale converted image from Hue Saturation Value (HSV) for disease classification (due to Cercospora leaf spot disease or two-spotted spider infestation). Discriminant analysis, Naive Bayes algorithm, support vector machine and neural network were the classification algorithms used with a resulting best accuracy of 97.61%, 95.62%, 98.01% and 98.94% for crop identification, 86.09%, 76.52%, 86.96% and 86.04% for disease classification respectively. Similarly, application of algorithm with 6 histogram-based descriptors for health status detection resulted in an accuracy of 66.67%, 37.04%, 50% and 72.9% respectively. Deep learning algorithm namely AlexNet was also evaluated which resulted in an accuracy of 100% for crop identification, 89.36% for health status detection and 81.51% for disease classification. Among the algorithms, AlexNet resulted in the best average accuracy of 90.29% for the above classification tasks." @default.
- W3212608725 created "2021-11-22" @default.
- W3212608725 creator A5015441170 @default.
- W3212608725 creator A5044598951 @default.
- W3212608725 creator A5044983570 @default.
- W3212608725 creator A5058166484 @default.
- W3212608725 date "2021-11-10" @default.
- W3212608725 modified "2023-09-27" @default.
- W3212608725 title "Crop identification and disease classification using traditional machine learning and deep learning approaches" @default.
- W3212608725 cites W1972847581 @default.
- W3212608725 cites W2048035952 @default.
- W3212608725 cites W2084328542 @default.
- W3212608725 cites W2095203964 @default.
- W3212608725 cites W2097641102 @default.
- W3212608725 cites W2116294570 @default.
- W3212608725 cites W2124075590 @default.
- W3212608725 cites W2155423555 @default.
- W3212608725 cites W2241490242 @default.
- W3212608725 cites W2277854822 @default.
- W3212608725 cites W2319902369 @default.
- W3212608725 cites W2520364485 @default.
- W3212608725 cites W2564341002 @default.
- W3212608725 cites W2586532996 @default.
- W3212608725 cites W2612844455 @default.
- W3212608725 cites W2618747515 @default.
- W3212608725 cites W2753403518 @default.
- W3212608725 cites W2789255992 @default.
- W3212608725 doi "https://doi.org/10.36909/jer.11941" @default.
- W3212608725 hasPublicationYear "2021" @default.
- W3212608725 type Work @default.
- W3212608725 sameAs 3212608725 @default.
- W3212608725 citedByCount "1" @default.
- W3212608725 countsByYear W32126087252023 @default.
- W3212608725 crossrefType "journal-article" @default.
- W3212608725 hasAuthorship W3212608725A5015441170 @default.
- W3212608725 hasAuthorship W3212608725A5044598951 @default.
- W3212608725 hasAuthorship W3212608725A5044983570 @default.
- W3212608725 hasAuthorship W3212608725A5058166484 @default.
- W3212608725 hasBestOaLocation W32126087251 @default.
- W3212608725 hasConcept C115961682 @default.
- W3212608725 hasConcept C119857082 @default.
- W3212608725 hasConcept C12267149 @default.
- W3212608725 hasConcept C153180895 @default.
- W3212608725 hasConcept C154945302 @default.
- W3212608725 hasConcept C33923547 @default.
- W3212608725 hasConcept C41008148 @default.
- W3212608725 hasConcept C52001869 @default.
- W3212608725 hasConcept C75294576 @default.
- W3212608725 hasConceptScore W3212608725C115961682 @default.
- W3212608725 hasConceptScore W3212608725C119857082 @default.
- W3212608725 hasConceptScore W3212608725C12267149 @default.
- W3212608725 hasConceptScore W3212608725C153180895 @default.
- W3212608725 hasConceptScore W3212608725C154945302 @default.
- W3212608725 hasConceptScore W3212608725C33923547 @default.
- W3212608725 hasConceptScore W3212608725C41008148 @default.
- W3212608725 hasConceptScore W3212608725C52001869 @default.
- W3212608725 hasConceptScore W3212608725C75294576 @default.
- W3212608725 hasLocation W32126087251 @default.
- W3212608725 hasOpenAccess W3212608725 @default.
- W3212608725 hasPrimaryLocation W32126087251 @default.
- W3212608725 hasRelatedWork W2028968693 @default.
- W3212608725 hasRelatedWork W2153189372 @default.
- W3212608725 hasRelatedWork W2539163683 @default.
- W3212608725 hasRelatedWork W2595988085 @default.
- W3212608725 hasRelatedWork W2979979539 @default.
- W3212608725 hasRelatedWork W3127425528 @default.
- W3212608725 hasRelatedWork W3214058074 @default.
- W3212608725 hasRelatedWork W4205958290 @default.
- W3212608725 hasRelatedWork W4313203779 @default.
- W3212608725 hasRelatedWork W4313549251 @default.
- W3212608725 isParatext "false" @default.
- W3212608725 isRetracted "false" @default.
- W3212608725 magId "3212608725" @default.
- W3212608725 workType "article" @default.