Matches in SemOpenAlex for { <https://semopenalex.org/work/W3212770952> ?p ?o ?g. }
- W3212770952 endingPage "7396" @default.
- W3212770952 startingPage "7396" @default.
- W3212770952 abstract "With the growing demand for structural health monitoring system applications, data imaging is an ideal method for performing regular routine maintenance inspections. Image analysis can provide invaluable information about the health conditions of a structure’s existing infrastructure by recording and analyzing exterior damages. Therefore, it is desirable to have an automated approach that reports defects on images reliably and robustly. This paper presents a multivariate analysis approach for images, specifically for assessing substantial damage (such as cracks). The image analysis provides graph representations that are related to the image, such as the histogram. In addition, image-processing techniques such as grayscale are also implemented, which enhance the object’s information present in the image. In addition, this study uses image segmentation and a neural network, for transforming an image to analyze it more easily and as a classifier, respectively. Initially, each concrete structure image is preprocessed to highlight the crack. A neural network is used to calculate and categorize the visual characteristics of each region, and it shows an accuracy for classification of 98%. Experimental results show that thermal image extraction yields better histogram and cumulative distribution function features. The system can promote the development of various thermal image applications, such as nonphysical visual recognition and fault detection analysis." @default.
- W3212770952 created "2021-11-22" @default.
- W3212770952 creator A5000020651 @default.
- W3212770952 creator A5021534281 @default.
- W3212770952 creator A5042259425 @default.
- W3212770952 creator A5059470260 @default.
- W3212770952 creator A5073787834 @default.
- W3212770952 date "2021-11-07" @default.
- W3212770952 modified "2023-10-11" @default.
- W3212770952 title "Multivariate Analysis of Concrete Image Using Thermography and Edge Detection" @default.
- W3212770952 cites W1759600866 @default.
- W3212770952 cites W1965574161 @default.
- W3212770952 cites W1988503262 @default.
- W3212770952 cites W2005029343 @default.
- W3212770952 cites W2023184793 @default.
- W3212770952 cites W2026380280 @default.
- W3212770952 cites W2032177683 @default.
- W3212770952 cites W2068855341 @default.
- W3212770952 cites W2080671225 @default.
- W3212770952 cites W2104014951 @default.
- W3212770952 cites W2133412966 @default.
- W3212770952 cites W2152404931 @default.
- W3212770952 cites W2609145024 @default.
- W3212770952 cites W2617575345 @default.
- W3212770952 cites W2737163017 @default.
- W3212770952 cites W2751059906 @default.
- W3212770952 cites W2803755786 @default.
- W3212770952 cites W2807217564 @default.
- W3212770952 cites W2887597701 @default.
- W3212770952 cites W2907831177 @default.
- W3212770952 cites W2910121985 @default.
- W3212770952 cites W2941646209 @default.
- W3212770952 cites W3013761254 @default.
- W3212770952 cites W3022792077 @default.
- W3212770952 cites W3024055739 @default.
- W3212770952 cites W3024475236 @default.
- W3212770952 cites W3027879481 @default.
- W3212770952 cites W3028650173 @default.
- W3212770952 cites W3034609614 @default.
- W3212770952 cites W3040786507 @default.
- W3212770952 cites W3047347843 @default.
- W3212770952 cites W3084948632 @default.
- W3212770952 cites W3089710165 @default.
- W3212770952 cites W3109080887 @default.
- W3212770952 cites W3125559191 @default.
- W3212770952 cites W3146711186 @default.
- W3212770952 cites W3163623175 @default.
- W3212770952 cites W3168842008 @default.
- W3212770952 cites W3201523099 @default.
- W3212770952 doi "https://doi.org/10.3390/s21217396" @default.
- W3212770952 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8587951" @default.
- W3212770952 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34770702" @default.
- W3212770952 hasPublicationYear "2021" @default.
- W3212770952 type Work @default.
- W3212770952 sameAs 3212770952 @default.
- W3212770952 citedByCount "2" @default.
- W3212770952 countsByYear W32127709522022 @default.
- W3212770952 crossrefType "journal-article" @default.
- W3212770952 hasAuthorship W3212770952A5000020651 @default.
- W3212770952 hasAuthorship W3212770952A5021534281 @default.
- W3212770952 hasAuthorship W3212770952A5042259425 @default.
- W3212770952 hasAuthorship W3212770952A5059470260 @default.
- W3212770952 hasAuthorship W3212770952A5073787834 @default.
- W3212770952 hasBestOaLocation W32127709521 @default.
- W3212770952 hasConcept C115961682 @default.
- W3212770952 hasConcept C124504099 @default.
- W3212770952 hasConcept C153180895 @default.
- W3212770952 hasConcept C154945302 @default.
- W3212770952 hasConcept C31972630 @default.
- W3212770952 hasConcept C41008148 @default.
- W3212770952 hasConcept C52622490 @default.
- W3212770952 hasConcept C53533937 @default.
- W3212770952 hasConcept C62725073 @default.
- W3212770952 hasConcept C63099799 @default.
- W3212770952 hasConcept C78201319 @default.
- W3212770952 hasConcept C89600930 @default.
- W3212770952 hasConcept C9417928 @default.
- W3212770952 hasConceptScore W3212770952C115961682 @default.
- W3212770952 hasConceptScore W3212770952C124504099 @default.
- W3212770952 hasConceptScore W3212770952C153180895 @default.
- W3212770952 hasConceptScore W3212770952C154945302 @default.
- W3212770952 hasConceptScore W3212770952C31972630 @default.
- W3212770952 hasConceptScore W3212770952C41008148 @default.
- W3212770952 hasConceptScore W3212770952C52622490 @default.
- W3212770952 hasConceptScore W3212770952C53533937 @default.
- W3212770952 hasConceptScore W3212770952C62725073 @default.
- W3212770952 hasConceptScore W3212770952C63099799 @default.
- W3212770952 hasConceptScore W3212770952C78201319 @default.
- W3212770952 hasConceptScore W3212770952C89600930 @default.
- W3212770952 hasConceptScore W3212770952C9417928 @default.
- W3212770952 hasFunder F4320322120 @default.
- W3212770952 hasIssue "21" @default.
- W3212770952 hasLocation W32127709521 @default.
- W3212770952 hasLocation W32127709522 @default.
- W3212770952 hasLocation W32127709523 @default.
- W3212770952 hasOpenAccess W3212770952 @default.
- W3212770952 hasPrimaryLocation W32127709521 @default.
- W3212770952 hasRelatedWork W1555939286 @default.