Matches in SemOpenAlex for { <https://semopenalex.org/work/W3212801169> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3212801169 abstract "Objective: To investigate if machine learning (ML) models can effectively predict clinical disease progression in mild-to-moderate Alzheimer’s disease (AD) patients during the timeframe of a phase 3 clinical trial. Background: In AD trials active treatment is intended to slow down the rate of cognitive decline. Enrollment of participants who will not show cognitive decline reduce the chance of detecting therapeutic effects. One strategy to boost the power of trials is to enroll individuals likely to progress using data-driven predictive models. Design/Methods: We used data from 202 participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and 77 participants from the placebo arm of the phase 3 trial of semagacestat for AD (LFAN) with diagnosis of mild-to-moderate AD at baseline. K-Nearest Neighborhood (kNN) models were trained using ADNI data to classify participants to 1) cognitive decliners, change of >0 from baseline in the Alzheimer’s Disease Assessment Scale cognitive subscale (ADAS-cog) score; and 2) Stable cognition, change of ≤0 from baseline ADAS-cog score, after 12 months of follow-up. Trained models were applied to data from LFAN trial (validation sample) to predict disease progression in 12 months. Feature-set in all models included demographics, Apo4 status, neurocognitive tests, and volumetric MRI. Results: kNN classifier had a sensitivity of 77.9% and specificity of 35.4% for identifying decliners in ADNI sample. In LFAN sample, the model showed an overall accuracy of 63.6%, sensitivity of 66.6%, and specificity of 50% in identifying decliners at the 12 months of follow-up. The model had a positive predictive value of 85.7%, which is 22.7% more than the base prevalence of 63% for decliners. Conclusions: Machine learning predictive models can be effectively used to boost the power of clinical trials by reducing the sample size. Disclosure: Dr. Ezzati has received personal compensation for consulting, serving on a scientific advisory board, speaking, or other activities with Eisai. Dr. Lipton has received personal compensation for consulting, serving on a scientific advisory board, speaking, or other activities with Teva Pharmaceuticals. Dr. Lipton has received compensation for serving on the Board of Directors of eNeura and Biohaven. Dr. Lipton holds stock and/or stock options in Biohaven which sponsored research in which Dr. Lipton was involved as an investigator. Dr. Lipton holds stock and/or stock options in Biohaven. Dr. Lipton has received research support from Migraine Research Foundation the National Headache Foundation and Amgen." @default.
- W3212801169 created "2021-11-22" @default.
- W3212801169 creator A5000448269 @default.
- W3212801169 creator A5089652557 @default.
- W3212801169 date "2020-04-14" @default.
- W3212801169 modified "2023-09-23" @default.
- W3212801169 title "Machine Learning Models Can Improve Efficiency of Alzheimer’s Disease Clinical Trials. (521)" @default.
- W3212801169 hasPublicationYear "2020" @default.
- W3212801169 type Work @default.
- W3212801169 sameAs 3212801169 @default.
- W3212801169 citedByCount "0" @default.
- W3212801169 crossrefType "journal-article" @default.
- W3212801169 hasAuthorship W3212801169A5000448269 @default.
- W3212801169 hasAuthorship W3212801169A5089652557 @default.
- W3212801169 hasConcept C105795698 @default.
- W3212801169 hasConcept C118552586 @default.
- W3212801169 hasConcept C119857082 @default.
- W3212801169 hasConcept C126322002 @default.
- W3212801169 hasConcept C129848803 @default.
- W3212801169 hasConcept C144024400 @default.
- W3212801169 hasConcept C149923435 @default.
- W3212801169 hasConcept C154945302 @default.
- W3212801169 hasConcept C169900460 @default.
- W3212801169 hasConcept C172467417 @default.
- W3212801169 hasConcept C2778373026 @default.
- W3212801169 hasConcept C2779134260 @default.
- W3212801169 hasConcept C2780084366 @default.
- W3212801169 hasConcept C33923547 @default.
- W3212801169 hasConcept C41008148 @default.
- W3212801169 hasConcept C502032728 @default.
- W3212801169 hasConcept C535046627 @default.
- W3212801169 hasConcept C58693492 @default.
- W3212801169 hasConcept C71924100 @default.
- W3212801169 hasConceptScore W3212801169C105795698 @default.
- W3212801169 hasConceptScore W3212801169C118552586 @default.
- W3212801169 hasConceptScore W3212801169C119857082 @default.
- W3212801169 hasConceptScore W3212801169C126322002 @default.
- W3212801169 hasConceptScore W3212801169C129848803 @default.
- W3212801169 hasConceptScore W3212801169C144024400 @default.
- W3212801169 hasConceptScore W3212801169C149923435 @default.
- W3212801169 hasConceptScore W3212801169C154945302 @default.
- W3212801169 hasConceptScore W3212801169C169900460 @default.
- W3212801169 hasConceptScore W3212801169C172467417 @default.
- W3212801169 hasConceptScore W3212801169C2778373026 @default.
- W3212801169 hasConceptScore W3212801169C2779134260 @default.
- W3212801169 hasConceptScore W3212801169C2780084366 @default.
- W3212801169 hasConceptScore W3212801169C33923547 @default.
- W3212801169 hasConceptScore W3212801169C41008148 @default.
- W3212801169 hasConceptScore W3212801169C502032728 @default.
- W3212801169 hasConceptScore W3212801169C535046627 @default.
- W3212801169 hasConceptScore W3212801169C58693492 @default.
- W3212801169 hasConceptScore W3212801169C71924100 @default.
- W3212801169 hasLocation W32128011691 @default.
- W3212801169 hasOpenAccess W3212801169 @default.
- W3212801169 hasPrimaryLocation W32128011691 @default.
- W3212801169 hasRelatedWork W128659953 @default.
- W3212801169 hasRelatedWork W1555288547 @default.
- W3212801169 hasRelatedWork W169893872 @default.
- W3212801169 hasRelatedWork W1991714215 @default.
- W3212801169 hasRelatedWork W2023766562 @default.
- W3212801169 hasRelatedWork W2033601413 @default.
- W3212801169 hasRelatedWork W2079423871 @default.
- W3212801169 hasRelatedWork W2102341792 @default.
- W3212801169 hasRelatedWork W2143561943 @default.
- W3212801169 hasRelatedWork W2148000979 @default.
- W3212801169 hasRelatedWork W2231692891 @default.
- W3212801169 hasRelatedWork W2235912857 @default.
- W3212801169 hasRelatedWork W2423909460 @default.
- W3212801169 hasRelatedWork W3030405483 @default.
- W3212801169 hasRelatedWork W3043979306 @default.
- W3212801169 hasRelatedWork W3080733801 @default.
- W3212801169 hasRelatedWork W3133570185 @default.
- W3212801169 hasRelatedWork W3157858889 @default.
- W3212801169 hasRelatedWork W3168342438 @default.
- W3212801169 hasRelatedWork W3190175964 @default.
- W3212801169 hasVolume "94" @default.
- W3212801169 isParatext "false" @default.
- W3212801169 isRetracted "false" @default.
- W3212801169 magId "3212801169" @default.
- W3212801169 workType "article" @default.