Matches in SemOpenAlex for { <https://semopenalex.org/work/W3212858282> ?p ?o ?g. }
- W3212858282 endingPage "44" @default.
- W3212858282 startingPage "36" @default.
- W3212858282 abstract "Aiming at the problem that the wind speed data collected by wind farms are affected by many factors and easy to introduce noise information, a wind speed prediction method based on data decomposition of improved singular spectrum analysis (ISSA) is proposed. In this paper, the ISSA is used to decompose the wind speed sequence into a series of sub-sequences. Based on the singular spectrum analysis (SSA), the ISSA introduces the singular entropy to judge the noise components of the wind speed series and remove them. Then, the artificial neural network model is used to calculate and compare the prediction results of several data preprocessing decomposition methods using EMD, EEMD, CEEMD, ISSA and the prediction results without data preprocessing. Experimental results show that the proposed method can effectively improve the prediction accuracy of the artificial neural network, and also has higher prediction accuracy than the comparison method, which verifies the effectiveness of the ISSA." @default.
- W3212858282 created "2021-11-22" @default.
- W3212858282 creator A5002293594 @default.
- W3212858282 creator A5057724775 @default.
- W3212858282 creator A5070095969 @default.
- W3212858282 date "2022-01-01" @default.
- W3212858282 modified "2023-09-23" @default.
- W3212858282 title "Ultra-short-term / short-term wind speed prediction based on improved singular spectrum analysis" @default.
- W3212858282 cites W1968528122 @default.
- W3212858282 cites W1989098521 @default.
- W3212858282 cites W1994170512 @default.
- W3212858282 cites W1999395181 @default.
- W3212858282 cites W2022912953 @default.
- W3212858282 cites W2025772295 @default.
- W3212858282 cites W2033904036 @default.
- W3212858282 cites W2036681246 @default.
- W3212858282 cites W2046580214 @default.
- W3212858282 cites W2055221518 @default.
- W3212858282 cites W2057936307 @default.
- W3212858282 cites W2060583485 @default.
- W3212858282 cites W2083620425 @default.
- W3212858282 cites W2111072639 @default.
- W3212858282 cites W2113238782 @default.
- W3212858282 cites W2120390927 @default.
- W3212858282 cites W2125848133 @default.
- W3212858282 cites W2156250920 @default.
- W3212858282 cites W2179877357 @default.
- W3212858282 cites W2511683089 @default.
- W3212858282 cites W2729912483 @default.
- W3212858282 cites W2754015034 @default.
- W3212858282 cites W2795468861 @default.
- W3212858282 cites W2801076518 @default.
- W3212858282 cites W2883208472 @default.
- W3212858282 cites W2899887821 @default.
- W3212858282 cites W2899996856 @default.
- W3212858282 cites W2900921197 @default.
- W3212858282 cites W2901964425 @default.
- W3212858282 cites W2922282168 @default.
- W3212858282 cites W2944436518 @default.
- W3212858282 cites W2970227833 @default.
- W3212858282 cites W3019036793 @default.
- W3212858282 cites W3046194311 @default.
- W3212858282 cites W3046260262 @default.
- W3212858282 doi "https://doi.org/10.1016/j.renene.2021.11.044" @default.
- W3212858282 hasPublicationYear "2022" @default.
- W3212858282 type Work @default.
- W3212858282 sameAs 3212858282 @default.
- W3212858282 citedByCount "15" @default.
- W3212858282 countsByYear W32128582822022 @default.
- W3212858282 countsByYear W32128582822023 @default.
- W3212858282 crossrefType "journal-article" @default.
- W3212858282 hasAuthorship W3212858282A5002293594 @default.
- W3212858282 hasAuthorship W3212858282A5057724775 @default.
- W3212858282 hasAuthorship W3212858282A5070095969 @default.
- W3212858282 hasConcept C10551718 @default.
- W3212858282 hasConcept C106301342 @default.
- W3212858282 hasConcept C11413529 @default.
- W3212858282 hasConcept C115961682 @default.
- W3212858282 hasConcept C119857082 @default.
- W3212858282 hasConcept C121332964 @default.
- W3212858282 hasConcept C124101348 @default.
- W3212858282 hasConcept C136272165 @default.
- W3212858282 hasConcept C143724316 @default.
- W3212858282 hasConcept C151406439 @default.
- W3212858282 hasConcept C151730666 @default.
- W3212858282 hasConcept C153180895 @default.
- W3212858282 hasConcept C153294291 @default.
- W3212858282 hasConcept C154945302 @default.
- W3212858282 hasConcept C161067210 @default.
- W3212858282 hasConcept C22789450 @default.
- W3212858282 hasConcept C34736171 @default.
- W3212858282 hasConcept C41008148 @default.
- W3212858282 hasConcept C50644808 @default.
- W3212858282 hasConcept C61797465 @default.
- W3212858282 hasConcept C62520636 @default.
- W3212858282 hasConcept C86803240 @default.
- W3212858282 hasConcept C99498987 @default.
- W3212858282 hasConceptScore W3212858282C10551718 @default.
- W3212858282 hasConceptScore W3212858282C106301342 @default.
- W3212858282 hasConceptScore W3212858282C11413529 @default.
- W3212858282 hasConceptScore W3212858282C115961682 @default.
- W3212858282 hasConceptScore W3212858282C119857082 @default.
- W3212858282 hasConceptScore W3212858282C121332964 @default.
- W3212858282 hasConceptScore W3212858282C124101348 @default.
- W3212858282 hasConceptScore W3212858282C136272165 @default.
- W3212858282 hasConceptScore W3212858282C143724316 @default.
- W3212858282 hasConceptScore W3212858282C151406439 @default.
- W3212858282 hasConceptScore W3212858282C151730666 @default.
- W3212858282 hasConceptScore W3212858282C153180895 @default.
- W3212858282 hasConceptScore W3212858282C153294291 @default.
- W3212858282 hasConceptScore W3212858282C154945302 @default.
- W3212858282 hasConceptScore W3212858282C161067210 @default.
- W3212858282 hasConceptScore W3212858282C22789450 @default.
- W3212858282 hasConceptScore W3212858282C34736171 @default.
- W3212858282 hasConceptScore W3212858282C41008148 @default.
- W3212858282 hasConceptScore W3212858282C50644808 @default.
- W3212858282 hasConceptScore W3212858282C61797465 @default.
- W3212858282 hasConceptScore W3212858282C62520636 @default.