Matches in SemOpenAlex for { <https://semopenalex.org/work/W3212912762> ?p ?o ?g. }
- W3212912762 endingPage "105014" @default.
- W3212912762 startingPage "105014" @default.
- W3212912762 abstract "Coronavirus disease-19 (COVID-19) is a severe respiratory viral disease first reported in late 2019 that has spread worldwide. Although some wealthy countries have made significant progress in detecting and containing this disease, most underdeveloped countries are still struggling to identify COVID-19 cases in large populations. With the rising number of COVID-19 cases, there are often insufficient COVID-19 diagnostic kits and related resources in such countries. However, other basic diagnostic resources often do exist, which motivated us to develop Deep Learning models to assist clinicians and radiologists to provide prompt diagnostic support to the patients. In this study, we have developed a deep learning-based COVID-19 case detection model trained with a dataset consisting of chest CT scans and X-ray images. A modified ResNet50V2 architecture was employed as deep learning architecture in the proposed model. The dataset utilized to train the model was collected from various publicly available sources and included four class labels: confirmed COVID-19, normal controls and confirmed viral and bacterial pneumonia cases. The aggregated dataset was preprocessed through a sharpening filter before feeding the dataset into the proposed model. This model attained an accuracy of 96.452% for four-class cases (COVID-19/Normal/Bacterial pneumonia/Viral pneumonia), 97.242% for three-class cases (COVID-19/Normal/Bacterial pneumonia) and 98.954% for two-class cases (COVID-19/Viral pneumonia) using chest X-ray images. The model acquired a comprehensive accuracy of 99.012% for three-class cases (COVID-19/Normal/Community-acquired pneumonia) and 99.99% for two-class cases (Normal/COVID-19) using CT-scan images of the chest. This high accuracy presents a new and potentially important resource to enable radiologists to identify and rapidly diagnose COVID-19 cases with only basic but widely available equipment." @default.
- W3212912762 created "2021-11-22" @default.
- W3212912762 creator A5007233031 @default.
- W3212912762 creator A5033058647 @default.
- W3212912762 creator A5034828056 @default.
- W3212912762 creator A5057313354 @default.
- W3212912762 creator A5065107822 @default.
- W3212912762 creator A5066094600 @default.
- W3212912762 creator A5071951670 @default.
- W3212912762 creator A5073472514 @default.
- W3212912762 creator A5090217787 @default.
- W3212912762 date "2021-12-01" @default.
- W3212912762 modified "2023-10-12" @default.
- W3212912762 title "A deep learning approach using effective preprocessing techniques to detect COVID-19 from chest CT-scan and X-ray images" @default.
- W3212912762 cites W2124756338 @default.
- W3212912762 cites W2141913146 @default.
- W3212912762 cites W2575657035 @default.
- W3212912762 cites W2581082771 @default.
- W3212912762 cites W2803716633 @default.
- W3212912762 cites W2954996726 @default.
- W3212912762 cites W2955805844 @default.
- W3212912762 cites W2979487364 @default.
- W3212912762 cites W3001683732 @default.
- W3212912762 cites W3002539152 @default.
- W3212912762 cites W3004906315 @default.
- W3212912762 cites W3006627382 @default.
- W3212912762 cites W3006645647 @default.
- W3212912762 cites W3007355693 @default.
- W3212912762 cites W3007764760 @default.
- W3212912762 cites W3009875419 @default.
- W3212912762 cites W3010278110 @default.
- W3212912762 cites W3011149445 @default.
- W3212912762 cites W3015059505 @default.
- W3212912762 cites W3017855299 @default.
- W3212912762 cites W3033616466 @default.
- W3212912762 cites W3036638392 @default.
- W3212912762 cites W3036674813 @default.
- W3212912762 cites W3037538421 @default.
- W3212912762 cites W3042426630 @default.
- W3212912762 cites W3082801331 @default.
- W3212912762 cites W3082967155 @default.
- W3212912762 cites W3086547236 @default.
- W3212912762 cites W3087099606 @default.
- W3212912762 cites W3091978650 @default.
- W3212912762 cites W3096918659 @default.
- W3212912762 cites W3097211536 @default.
- W3212912762 cites W3100327638 @default.
- W3212912762 cites W3100523627 @default.
- W3212912762 cites W3100993552 @default.
- W3212912762 cites W3106794539 @default.
- W3212912762 cites W3109495579 @default.
- W3212912762 cites W3124115765 @default.
- W3212912762 cites W3126184947 @default.
- W3212912762 cites W3137554957 @default.
- W3212912762 cites W3146264788 @default.
- W3212912762 cites W3154144457 @default.
- W3212912762 cites W3159597990 @default.
- W3212912762 cites W3161109064 @default.
- W3212912762 cites W3162744106 @default.
- W3212912762 cites W3162881778 @default.
- W3212912762 cites W3164076340 @default.
- W3212912762 cites W3164956781 @default.
- W3212912762 cites W3176923149 @default.
- W3212912762 cites W3187341982 @default.
- W3212912762 doi "https://doi.org/10.1016/j.compbiomed.2021.105014" @default.
- W3212912762 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8566098" @default.
- W3212912762 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34781234" @default.
- W3212912762 hasPublicationYear "2021" @default.
- W3212912762 type Work @default.
- W3212912762 sameAs 3212912762 @default.
- W3212912762 citedByCount "42" @default.
- W3212912762 countsByYear W32129127622021 @default.
- W3212912762 countsByYear W32129127622022 @default.
- W3212912762 countsByYear W32129127622023 @default.
- W3212912762 crossrefType "journal-article" @default.
- W3212912762 hasAuthorship W3212912762A5007233031 @default.
- W3212912762 hasAuthorship W3212912762A5033058647 @default.
- W3212912762 hasAuthorship W3212912762A5034828056 @default.
- W3212912762 hasAuthorship W3212912762A5057313354 @default.
- W3212912762 hasAuthorship W3212912762A5065107822 @default.
- W3212912762 hasAuthorship W3212912762A5066094600 @default.
- W3212912762 hasAuthorship W3212912762A5071951670 @default.
- W3212912762 hasAuthorship W3212912762A5073472514 @default.
- W3212912762 hasAuthorship W3212912762A5090217787 @default.
- W3212912762 hasBestOaLocation W32129127621 @default.
- W3212912762 hasConcept C108583219 @default.
- W3212912762 hasConcept C126322002 @default.
- W3212912762 hasConcept C126838900 @default.
- W3212912762 hasConcept C142724271 @default.
- W3212912762 hasConcept C154945302 @default.
- W3212912762 hasConcept C2777914695 @default.
- W3212912762 hasConcept C2778158872 @default.
- W3212912762 hasConcept C2779134260 @default.
- W3212912762 hasConcept C3008058167 @default.
- W3212912762 hasConcept C34736171 @default.
- W3212912762 hasConcept C41008148 @default.
- W3212912762 hasConcept C524204448 @default.
- W3212912762 hasConcept C71924100 @default.