Matches in SemOpenAlex for { <https://semopenalex.org/work/W3212978412> ?p ?o ?g. }
- W3212978412 abstract "Many engineering problems require the prediction of realization-to-realization variability or a refined description of modeled quantities. In that case, it is necessary to sample elements from unknown high-dimensional spaces with possibly millions of degrees of freedom. While there exist methods able to sample elements from probability density functions (PDF) with known shapes, several approximations need to be made when the distribution is unknown. In this paper the sampling method, as well as the inference of the underlying distribution, are both handled with a data-driven method known as generative adversarial networks (GAN), which trains two competing neural networks to produce a network that can effectively generate samples from the training set distribution. In practice, it is often necessary to draw samples from conditional distributions. When the conditional variables are continuous, only one (if any) data point corresponding to a particular value of a conditioning variable may be available, which is not sufficient to estimate the conditional distribution. This work handles this problem using an a priori estimation of the conditional moments of a PDF. Two approaches, stochastic estimation, and an external neural network are compared here for computing these moments; however, any preferred method can be used. The algorithm is demonstrated in the case of the deconvolution of a filtered turbulent flow field. It is shown that all the versions of the proposed algorithm effectively sample the target conditional distribution with minimal impact on the quality of the samples compared to state-of-the-art methods. Additionally, the procedure can be used as a metric for the diversity of samples generated by a conditional GAN (cGAN) conditioned with continuous variables." @default.
- W3212978412 created "2021-11-22" @default.
- W3212978412 creator A5025914946 @default.
- W3212978412 creator A5041738041 @default.
- W3212978412 creator A5052005784 @default.
- W3212978412 creator A5085133267 @default.
- W3212978412 date "2021-11-08" @default.
- W3212978412 modified "2023-09-27" @default.
- W3212978412 title "Adversarial sampling of unknown and high-dimensional conditional distributions" @default.
- W3212978412 cites W1959608418 @default.
- W3212978412 cites W1965391864 @default.
- W3212978412 cites W1986138688 @default.
- W3212978412 cites W1992484153 @default.
- W3212978412 cites W1994927638 @default.
- W3212978412 cites W2002841125 @default.
- W3212978412 cites W2009448156 @default.
- W3212978412 cites W2010998617 @default.
- W3212978412 cites W2022938326 @default.
- W3212978412 cites W2025502456 @default.
- W3212978412 cites W2026159733 @default.
- W3212978412 cites W2030940486 @default.
- W3212978412 cites W2037393162 @default.
- W3212978412 cites W2041863660 @default.
- W3212978412 cites W2048744043 @default.
- W3212978412 cites W2056760934 @default.
- W3212978412 cites W2057771431 @default.
- W3212978412 cites W2069824076 @default.
- W3212978412 cites W2078179989 @default.
- W3212978412 cites W2091106091 @default.
- W3212978412 cites W2091345137 @default.
- W3212978412 cites W2097117768 @default.
- W3212978412 cites W2099471712 @default.
- W3212978412 cites W2116011497 @default.
- W3212978412 cites W2125389028 @default.
- W3212978412 cites W2131413835 @default.
- W3212978412 cites W2131692411 @default.
- W3212978412 cites W2138309709 @default.
- W3212978412 cites W2141394518 @default.
- W3212978412 cites W2152977846 @default.
- W3212978412 cites W2179952483 @default.
- W3212978412 cites W2334772160 @default.
- W3212978412 cites W2346600073 @default.
- W3212978412 cites W2521028896 @default.
- W3212978412 cites W2554314924 @default.
- W3212978412 cites W2566832195 @default.
- W3212978412 cites W2573380384 @default.
- W3212978412 cites W2584668177 @default.
- W3212978412 cites W2751586045 @default.
- W3212978412 cites W2788549480 @default.
- W3212978412 cites W2805984778 @default.
- W3212978412 cites W2896415699 @default.
- W3212978412 cites W2897628882 @default.
- W3212978412 cites W2903546100 @default.
- W3212978412 cites W2909854773 @default.
- W3212978412 cites W2913728931 @default.
- W3212978412 cites W2914848199 @default.
- W3212978412 cites W2934106568 @default.
- W3212978412 cites W2948093368 @default.
- W3212978412 cites W2950560720 @default.
- W3212978412 cites W2955353951 @default.
- W3212978412 cites W2962879692 @default.
- W3212978412 cites W2963073614 @default.
- W3212978412 cites W2963142510 @default.
- W3212978412 cites W2963185411 @default.
- W3212978412 cites W2963268903 @default.
- W3212978412 cites W2963330667 @default.
- W3212978412 cites W2963373786 @default.
- W3212978412 cites W2963981733 @default.
- W3212978412 cites W2964307019 @default.
- W3212978412 cites W2971128425 @default.
- W3212978412 cites W2980547109 @default.
- W3212978412 cites W2989953713 @default.
- W3212978412 cites W3004450693 @default.
- W3212978412 cites W3007969070 @default.
- W3212978412 cites W3009154374 @default.
- W3212978412 cites W3009699607 @default.
- W3212978412 cites W3035212626 @default.
- W3212978412 cites W3035574324 @default.
- W3212978412 cites W3037545792 @default.
- W3212978412 cites W3039441806 @default.
- W3212978412 cites W3088818092 @default.
- W3212978412 cites W3097532568 @default.
- W3212978412 cites W3098926478 @default.
- W3212978412 cites W3107014648 @default.
- W3212978412 cites W3114871366 @default.
- W3212978412 cites W3120515765 @default.
- W3212978412 cites W3122043357 @default.
- W3212978412 cites W3196687842 @default.
- W3212978412 cites W326249748 @default.
- W3212978412 hasPublicationYear "2021" @default.
- W3212978412 type Work @default.
- W3212978412 sameAs 3212978412 @default.
- W3212978412 citedByCount "0" @default.
- W3212978412 crossrefType "posted-content" @default.
- W3212978412 hasAuthorship W3212978412A5025914946 @default.
- W3212978412 hasAuthorship W3212978412A5041738041 @default.
- W3212978412 hasAuthorship W3212978412A5052005784 @default.
- W3212978412 hasAuthorship W3212978412A5085133267 @default.
- W3212978412 hasConcept C105795698 @default.
- W3212978412 hasConcept C106131492 @default.