Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213012805> ?p ?o ?g. }
- W3213012805 endingPage "211213" @default.
- W3213012805 startingPage "211213" @default.
- W3213012805 abstract "Lithium-ion batteries have the advantage of high energy density, low self-discharge rate, and long cycle life, and are currently the most widely used energy storage carriers. Accurate state of charge (SOC) estimation is essential to ensure the lithium-ion battery's safe and reliable operation. In order to improve the accuracy of estimation, this paper creatively applies the extended Kalman filter (EKF) to the improved nonlinear autoregressive algorithm with an exogenous neural network (NARXNN), forming a NARX-EKF neural network model for SOC prediction of the lithium-ion battery for the first time. This method avoids complicated equivalent modeling and parameter identification, rather directly maps the measured voltage, current, and temperature to the SOC. The data set is obtained by simulating the driving cycle load of the lithium-ion battery under different working conditions, and the network is tested under cyclic working conditions, dynamic working conditions, different temperature conditions, and different aging cycles. The SOC estimation results of the NARX-EKF model are evaluated from three aspects: mean absolute error (MAE), root mean square error (RMSE), and SOC error. Under cyclic conditions, the RMSE and MAE of NARXNN are only 1.4% and 1.3%, which is only 50% of other neural networks. In the dynamic working condition test, the maximum error of NARXNN optimized by EKF is reduced by about 50%, and the RMSE and MAE of the model are only 20% of other neural networks. When the ambient temperature changes, the RMSE and MAE of the model under low-temperature conditions were 1.2% and 0.9% respectively. The RMSE and MAE of the model under high-temperature conditions were 0.6% and 0.5% respectively. In addition, the NARX-EKF network can well solve the impact of different aging degrees of lithium-ion batteries on SOC estimation. When the battery health status is only 70%, the RMSE and MAE of the model were only 2.7% and 2.5% respectively. The results show that the NARX-EKF model has high accuracy, robustness, and good application prospects." @default.
- W3213012805 created "2021-11-22" @default.
- W3213012805 creator A5001014826 @default.
- W3213012805 date "2021-12-01" @default.
- W3213012805 modified "2023-10-12" @default.
- W3213012805 title "A Novel State of Charge Estimation for Energy Storage Systems Based on the Joint NARX Network and Filter Algorithm" @default.
- W3213012805 cites W2519883542 @default.
- W3213012805 cites W2564689092 @default.
- W3213012805 cites W2740136822 @default.
- W3213012805 cites W2763117619 @default.
- W3213012805 cites W2774327138 @default.
- W3213012805 cites W2792524465 @default.
- W3213012805 cites W2797078627 @default.
- W3213012805 cites W2799879082 @default.
- W3213012805 cites W2885578090 @default.
- W3213012805 cites W2921068663 @default.
- W3213012805 cites W2941114502 @default.
- W3213012805 cites W2943367414 @default.
- W3213012805 cites W2964280852 @default.
- W3213012805 cites W2965809956 @default.
- W3213012805 cites W2966463151 @default.
- W3213012805 cites W2972300687 @default.
- W3213012805 cites W2977776292 @default.
- W3213012805 cites W2985451038 @default.
- W3213012805 cites W2988768798 @default.
- W3213012805 cites W2990494401 @default.
- W3213012805 cites W2990519409 @default.
- W3213012805 cites W2991380249 @default.
- W3213012805 cites W2994899538 @default.
- W3213012805 cites W2995833555 @default.
- W3213012805 cites W2996030141 @default.
- W3213012805 cites W2999121641 @default.
- W3213012805 cites W3003583142 @default.
- W3213012805 cites W3005214403 @default.
- W3213012805 cites W3009388392 @default.
- W3213012805 cites W3012958665 @default.
- W3213012805 cites W3015647112 @default.
- W3213012805 cites W3028416073 @default.
- W3213012805 cites W3041558315 @default.
- W3213012805 cites W3041583333 @default.
- W3213012805 doi "https://doi.org/10.20964/2021.12.50" @default.
- W3213012805 hasPublicationYear "2021" @default.
- W3213012805 type Work @default.
- W3213012805 sameAs 3213012805 @default.
- W3213012805 citedByCount "4" @default.
- W3213012805 countsByYear W32130128052022 @default.
- W3213012805 countsByYear W32130128052023 @default.
- W3213012805 crossrefType "journal-article" @default.
- W3213012805 hasAuthorship W3213012805A5001014826 @default.
- W3213012805 hasBestOaLocation W32130128051 @default.
- W3213012805 hasConcept C105795698 @default.
- W3213012805 hasConcept C106131492 @default.
- W3213012805 hasConcept C11413529 @default.
- W3213012805 hasConcept C127413603 @default.
- W3213012805 hasConcept C154945302 @default.
- W3213012805 hasConcept C170154142 @default.
- W3213012805 hasConcept C18555067 @default.
- W3213012805 hasConcept C186370098 @default.
- W3213012805 hasConcept C201995342 @default.
- W3213012805 hasConcept C2775924081 @default.
- W3213012805 hasConcept C31972630 @default.
- W3213012805 hasConcept C33923547 @default.
- W3213012805 hasConcept C41008148 @default.
- W3213012805 hasConcept C42536954 @default.
- W3213012805 hasConcept C47446073 @default.
- W3213012805 hasConcept C48103436 @default.
- W3213012805 hasConcept C50644808 @default.
- W3213012805 hasConcept C96250715 @default.
- W3213012805 hasConceptScore W3213012805C105795698 @default.
- W3213012805 hasConceptScore W3213012805C106131492 @default.
- W3213012805 hasConceptScore W3213012805C11413529 @default.
- W3213012805 hasConceptScore W3213012805C127413603 @default.
- W3213012805 hasConceptScore W3213012805C154945302 @default.
- W3213012805 hasConceptScore W3213012805C170154142 @default.
- W3213012805 hasConceptScore W3213012805C18555067 @default.
- W3213012805 hasConceptScore W3213012805C186370098 @default.
- W3213012805 hasConceptScore W3213012805C201995342 @default.
- W3213012805 hasConceptScore W3213012805C2775924081 @default.
- W3213012805 hasConceptScore W3213012805C31972630 @default.
- W3213012805 hasConceptScore W3213012805C33923547 @default.
- W3213012805 hasConceptScore W3213012805C41008148 @default.
- W3213012805 hasConceptScore W3213012805C42536954 @default.
- W3213012805 hasConceptScore W3213012805C47446073 @default.
- W3213012805 hasConceptScore W3213012805C48103436 @default.
- W3213012805 hasConceptScore W3213012805C50644808 @default.
- W3213012805 hasConceptScore W3213012805C96250715 @default.
- W3213012805 hasIssue "12" @default.
- W3213012805 hasLocation W32130128051 @default.
- W3213012805 hasLocation W32130128052 @default.
- W3213012805 hasLocation W32130128053 @default.
- W3213012805 hasOpenAccess W3213012805 @default.
- W3213012805 hasPrimaryLocation W32130128051 @default.
- W3213012805 hasRelatedWork W1545859685 @default.
- W3213012805 hasRelatedWork W2076556181 @default.
- W3213012805 hasRelatedWork W2606910468 @default.
- W3213012805 hasRelatedWork W2734185189 @default.
- W3213012805 hasRelatedWork W2799656149 @default.
- W3213012805 hasRelatedWork W2899084033 @default.