Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213175085> ?p ?o ?g. }
- W3213175085 abstract "We investigate the applicability of machine learning techniques in studying the finite-size effects associated with many-body physics. These techniques have an emerging presence in many-body theory as they have been used for interpolations, extrapolations, and in modeling wave functions. We will resolve several issues associated with machine learning and many-body calculations such as small datasets, outliers, and discontinuities, for the purpose of extrapolating finite calculations to macroscopic scales. We carry out a systematic investigation of two related systems by developing metrics that aim to avoid spurious effects and capture desired features. This work uses neural networks to extrapolate the unitary gas to the thermodynamic limit at zero range, which is otherwise difficult to reach. The effective mass of strongly interacting neutron matter is also studied and makes use of the noninteracting problem to resolve discontinuous predictions. For this investigation, we also carried out new auxiliary field diffusion Monte Carlo (AFDMC) calculations for a variety of densities and particle numbers. Ultimately, we demonstrate an effective utility for neural networks in this context." @default.
- W3213175085 created "2021-11-22" @default.
- W3213175085 creator A5060212223 @default.
- W3213175085 creator A5086577183 @default.
- W3213175085 date "2021-11-05" @default.
- W3213175085 modified "2023-10-17" @default.
- W3213175085 title "Machine-learning approach to finite-size effects in systems with strongly interacting fermions" @default.
- W3213175085 cites W125596474 @default.
- W3213175085 cites W1539284159 @default.
- W3213175085 cites W1602301868 @default.
- W3213175085 cites W1694441644 @default.
- W3213175085 cites W1835796709 @default.
- W3213175085 cites W1974455323 @default.
- W3213175085 cites W1976949734 @default.
- W3213175085 cites W1977335201 @default.
- W3213175085 cites W1978002377 @default.
- W3213175085 cites W1979536237 @default.
- W3213175085 cites W2019226779 @default.
- W3213175085 cites W2024219458 @default.
- W3213175085 cites W2024616797 @default.
- W3213175085 cites W2026976136 @default.
- W3213175085 cites W2027232051 @default.
- W3213175085 cites W2034269966 @default.
- W3213175085 cites W2036221118 @default.
- W3213175085 cites W2050279095 @default.
- W3213175085 cites W2050632958 @default.
- W3213175085 cites W2055467122 @default.
- W3213175085 cites W2069653116 @default.
- W3213175085 cites W2073596150 @default.
- W3213175085 cites W2081328147 @default.
- W3213175085 cites W2092076272 @default.
- W3213175085 cites W2113757180 @default.
- W3213175085 cites W2122203937 @default.
- W3213175085 cites W2128167784 @default.
- W3213175085 cites W2142770521 @default.
- W3213175085 cites W2149739919 @default.
- W3213175085 cites W2150021999 @default.
- W3213175085 cites W2162044523 @default.
- W3213175085 cites W2169076560 @default.
- W3213175085 cites W2238129198 @default.
- W3213175085 cites W2337082154 @default.
- W3213175085 cites W2410393542 @default.
- W3213175085 cites W2419175238 @default.
- W3213175085 cites W2530117613 @default.
- W3213175085 cites W2530819665 @default.
- W3213175085 cites W2611613453 @default.
- W3213175085 cites W2736298358 @default.
- W3213175085 cites W2759176833 @default.
- W3213175085 cites W2781887058 @default.
- W3213175085 cites W2810437889 @default.
- W3213175085 cites W2897761084 @default.
- W3213175085 cites W2898121159 @default.
- W3213175085 cites W2899081963 @default.
- W3213175085 cites W2906994341 @default.
- W3213175085 cites W2946506735 @default.
- W3213175085 cites W2968585480 @default.
- W3213175085 cites W2990347899 @default.
- W3213175085 cites W3019101549 @default.
- W3213175085 cites W3022886304 @default.
- W3213175085 cites W3045659006 @default.
- W3213175085 cites W3093994508 @default.
- W3213175085 cites W3099013266 @default.
- W3213175085 cites W3099739167 @default.
- W3213175085 cites W3104481216 @default.
- W3213175085 cites W3106521325 @default.
- W3213175085 cites W3106802747 @default.
- W3213175085 cites W3121955555 @default.
- W3213175085 cites W3122378152 @default.
- W3213175085 cites W3124531685 @default.
- W3213175085 cites W3138917809 @default.
- W3213175085 doi "https://doi.org/10.1103/physrevc.104.055802" @default.
- W3213175085 hasPublicationYear "2021" @default.
- W3213175085 type Work @default.
- W3213175085 sameAs 3213175085 @default.
- W3213175085 citedByCount "7" @default.
- W3213175085 countsByYear W32131750852022 @default.
- W3213175085 crossrefType "journal-article" @default.
- W3213175085 hasAuthorship W3213175085A5060212223 @default.
- W3213175085 hasAuthorship W3213175085A5086577183 @default.
- W3213175085 hasBestOaLocation W32131750852 @default.
- W3213175085 hasConcept C105795698 @default.
- W3213175085 hasConcept C107673813 @default.
- W3213175085 hasConcept C111350023 @default.
- W3213175085 hasConcept C119857082 @default.
- W3213175085 hasConcept C121332964 @default.
- W3213175085 hasConcept C121864883 @default.
- W3213175085 hasConcept C13153151 @default.
- W3213175085 hasConcept C134306372 @default.
- W3213175085 hasConcept C136197465 @default.
- W3213175085 hasConcept C151201525 @default.
- W3213175085 hasConcept C151730666 @default.
- W3213175085 hasConcept C154945302 @default.
- W3213175085 hasConcept C15627037 @default.
- W3213175085 hasConcept C159985019 @default.
- W3213175085 hasConcept C192562407 @default.
- W3213175085 hasConcept C19499675 @default.
- W3213175085 hasConcept C204323151 @default.
- W3213175085 hasConcept C2779343474 @default.
- W3213175085 hasConcept C33923547 @default.
- W3213175085 hasConcept C41008148 @default.