Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213209526> ?p ?o ?g. }
- W3213209526 endingPage "20" @default.
- W3213209526 startingPage "1" @default.
- W3213209526 abstract "Osteoarthritis (OA), especially knee OA, is the most common form of arthritis, causing significant disability in patients worldwide. Manual diagnosis, segmentation, and annotations of knee joints remain as the popular method to diagnose OA in clinical practices, although they are tedious and greatly subject to user variation. Therefore, to overcome the limitations of the commonly used method as above, numerous deep learning approaches, especially the convolutional neural network (CNN), have been developed to improve the clinical workflow efficiency. Medical imaging processes, especially those that produce 3-dimensional (3D) images such as MRI, possess ability to reveal hidden structures in a volumetric view. Acknowledging that changes in a knee joint is a 3D complexity, 3D CNN has been employed to analyse the joint problem for a more accurate diagnosis in the recent years. In this review, we provide a broad overview on the current 2D and 3D CNN approaches in the OA research field. We reviewed 74 studies related to classification and segmentation of knee osteoarthritis from the Web of Science database and discussed the various state-of-the-art deep learning approaches proposed. We highlighted the potential and possibility of 3D CNN in the knee osteoarthritis field. We concluded by discussing the possible challenges faced as well as the potential advancements in adopting 3D CNNs in this field." @default.
- W3213209526 created "2021-11-22" @default.
- W3213209526 creator A5006457038 @default.
- W3213209526 creator A5010585047 @default.
- W3213209526 creator A5038282985 @default.
- W3213209526 creator A5040863689 @default.
- W3213209526 creator A5060450772 @default.
- W3213209526 creator A5071996865 @default.
- W3213209526 creator A5084900407 @default.
- W3213209526 date "2021-11-10" @default.
- W3213209526 modified "2023-10-11" @default.
- W3213209526 title "Emergence of Deep Learning in Knee Osteoarthritis Diagnosis" @default.
- W3213209526 cites W1901129140 @default.
- W3213209526 cites W1915761309 @default.
- W3213209526 cites W2004499882 @default.
- W3213209526 cites W2317897298 @default.
- W3213209526 cites W2737373222 @default.
- W3213209526 cites W2746276581 @default.
- W3213209526 cites W2790091880 @default.
- W3213209526 cites W2794523648 @default.
- W3213209526 cites W2794990008 @default.
- W3213209526 cites W2803328900 @default.
- W3213209526 cites W2803537647 @default.
- W3213209526 cites W2807444515 @default.
- W3213209526 cites W2885303411 @default.
- W3213209526 cites W2895063672 @default.
- W3213209526 cites W2897451575 @default.
- W3213209526 cites W2897454585 @default.
- W3213209526 cites W2906358602 @default.
- W3213209526 cites W2923189046 @default.
- W3213209526 cites W2935986058 @default.
- W3213209526 cites W2936648314 @default.
- W3213209526 cites W2938237798 @default.
- W3213209526 cites W2938248921 @default.
- W3213209526 cites W2940122146 @default.
- W3213209526 cites W2951269226 @default.
- W3213209526 cites W2959938807 @default.
- W3213209526 cites W2963202012 @default.
- W3213209526 cites W2963565427 @default.
- W3213209526 cites W2966976441 @default.
- W3213209526 cites W2974088513 @default.
- W3213209526 cites W2979378912 @default.
- W3213209526 cites W2979526238 @default.
- W3213209526 cites W2979974266 @default.
- W3213209526 cites W2986764893 @default.
- W3213209526 cites W2990096221 @default.
- W3213209526 cites W2990697799 @default.
- W3213209526 cites W2992133468 @default.
- W3213209526 cites W2996577706 @default.
- W3213209526 cites W2999146124 @default.
- W3213209526 cites W3003847424 @default.
- W3213209526 cites W3005507917 @default.
- W3213209526 cites W3014080415 @default.
- W3213209526 cites W3014500057 @default.
- W3213209526 cites W3015522225 @default.
- W3213209526 cites W3016150169 @default.
- W3213209526 cites W3017873021 @default.
- W3213209526 cites W3018749356 @default.
- W3213209526 cites W3019526595 @default.
- W3213209526 cites W3019540501 @default.
- W3213209526 cites W3021106503 @default.
- W3213209526 cites W3028045665 @default.
- W3213209526 cites W3034047776 @default.
- W3213209526 cites W3036485623 @default.
- W3213209526 cites W3044009583 @default.
- W3213209526 cites W3045710029 @default.
- W3213209526 cites W3058910814 @default.
- W3213209526 cites W3091723340 @default.
- W3213209526 cites W3091992955 @default.
- W3213209526 cites W3092937901 @default.
- W3213209526 cites W3096538936 @default.
- W3213209526 cites W3114674742 @default.
- W3213209526 cites W3120329073 @default.
- W3213209526 cites W3121044953 @default.
- W3213209526 cites W3127714917 @default.
- W3213209526 cites W3144560185 @default.
- W3213209526 doi "https://doi.org/10.1155/2021/4931437" @default.
- W3213209526 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8598325" @default.
- W3213209526 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34804143" @default.
- W3213209526 hasPublicationYear "2021" @default.
- W3213209526 type Work @default.
- W3213209526 sameAs 3213209526 @default.
- W3213209526 citedByCount "31" @default.
- W3213209526 countsByYear W32132095262022 @default.
- W3213209526 countsByYear W32132095262023 @default.
- W3213209526 crossrefType "journal-article" @default.
- W3213209526 hasAuthorship W3213209526A5006457038 @default.
- W3213209526 hasAuthorship W3213209526A5010585047 @default.
- W3213209526 hasAuthorship W3213209526A5038282985 @default.
- W3213209526 hasAuthorship W3213209526A5040863689 @default.
- W3213209526 hasAuthorship W3213209526A5060450772 @default.
- W3213209526 hasAuthorship W3213209526A5071996865 @default.
- W3213209526 hasAuthorship W3213209526A5084900407 @default.
- W3213209526 hasBestOaLocation W32132095261 @default.
- W3213209526 hasConcept C108583219 @default.
- W3213209526 hasConcept C119857082 @default.
- W3213209526 hasConcept C141071460 @default.
- W3213209526 hasConcept C142724271 @default.