Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213237933> ?p ?o ?g. }
- W3213237933 endingPage "31715" @default.
- W3213237933 startingPage "31699" @default.
- W3213237933 abstract "The intersection line information of the point cloud between the coal wall and the roof can not only accurately reflect the direction information of the scraper conveyor but also provide a preliminary basis for realizing the intelligent coal mine. However, the indirect method of using deep learning to segment the point cloud of coal mine working face cannot make full use of the rich information provided by the point cloud data. The direct method of using deep learning to segment the point cloud ignores the local feature relationship between points. Therefore, we propose to use dynamic graph convolution neural networks (DGCNNs) to segment the point cloud of the coal wall and roof so as to obtain the intersection line between them. First, in view of the characteristics of heavy dust and strong electromagnetic interference in the environment of the coal mine working face, we have installed an underground inspection robot so that we use light detection and ranging to obtain the point cloud of the coal mine working face. At the same time, we put forward a fast labeling method of the point cloud of the coal mine working face and an efficient training method of the depth neural network. Second, on the basis of edge convolution, being the greatest innovation of DGCNNs, we analyze the influence of the number of layers, K value, and output feature dimension of edge convolution on the effect of DGCNNs segmenting the point cloud of the coal mine working face and obtaining the intersection line of the coal wall and roof. Finally, we compare DGCNNs with PointNet and PointNet++. The results show that the DGCNN exhibits the best performance. What is more, the results provide a research foundation for the application of DGCNNs in the field of energy. Last but not least, the research results provide a direct and key basis for the adjustment of the scraper conveyor, which is of great significance for an intelligent coal mine working face and accurate construction of a geological information model." @default.
- W3213237933 created "2021-11-22" @default.
- W3213237933 creator A5016223207 @default.
- W3213237933 creator A5016794987 @default.
- W3213237933 creator A5050990899 @default.
- W3213237933 creator A5051265675 @default.
- W3213237933 creator A5056504452 @default.
- W3213237933 creator A5064264250 @default.
- W3213237933 creator A5073830471 @default.
- W3213237933 date "2021-11-15" @default.
- W3213237933 modified "2023-10-09" @default.
- W3213237933 title "Coal Wall and Roof Segmentation in the Coal Mine Working Face Based on Dynamic Graph Convolution Neural Networks" @default.
- W3213237933 cites W2028481299 @default.
- W3213237933 cites W2052143244 @default.
- W3213237933 cites W2081233986 @default.
- W3213237933 cites W2085519352 @default.
- W3213237933 cites W2090046561 @default.
- W3213237933 cites W2104525659 @default.
- W3213237933 cites W2110673467 @default.
- W3213237933 cites W2614059183 @default.
- W3213237933 cites W2754886012 @default.
- W3213237933 cites W2757015855 @default.
- W3213237933 cites W2770745688 @default.
- W3213237933 cites W2789968955 @default.
- W3213237933 cites W2790308185 @default.
- W3213237933 cites W2800337392 @default.
- W3213237933 cites W2914452559 @default.
- W3213237933 cites W2963182550 @default.
- W3213237933 cites W2963278046 @default.
- W3213237933 cites W2963727135 @default.
- W3213237933 cites W2969996838 @default.
- W3213237933 cites W2972679225 @default.
- W3213237933 cites W2978484973 @default.
- W3213237933 cites W2979443209 @default.
- W3213237933 cites W2979750740 @default.
- W3213237933 cites W2981873522 @default.
- W3213237933 cites W2984093360 @default.
- W3213237933 cites W2987334222 @default.
- W3213237933 cites W2989736514 @default.
- W3213237933 cites W2995733224 @default.
- W3213237933 cites W3002598676 @default.
- W3213237933 cites W3009888212 @default.
- W3213237933 cites W3013857270 @default.
- W3213237933 cites W3015428699 @default.
- W3213237933 cites W3020834419 @default.
- W3213237933 cites W3022697572 @default.
- W3213237933 cites W3024947376 @default.
- W3213237933 cites W3030892966 @default.
- W3213237933 cites W3037813647 @default.
- W3213237933 cites W3039008491 @default.
- W3213237933 cites W3043770819 @default.
- W3213237933 cites W3045663890 @default.
- W3213237933 cites W3048967681 @default.
- W3213237933 cites W3080740698 @default.
- W3213237933 cites W3087558468 @default.
- W3213237933 cites W3094322624 @default.
- W3213237933 cites W3100537819 @default.
- W3213237933 cites W3104698820 @default.
- W3213237933 cites W3108642192 @default.
- W3213237933 cites W3125155369 @default.
- W3213237933 cites W3134146960 @default.
- W3213237933 cites W3135396420 @default.
- W3213237933 cites W3180499218 @default.
- W3213237933 cites W3182287748 @default.
- W3213237933 doi "https://doi.org/10.1021/acsomega.1c04393" @default.
- W3213237933 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34869994" @default.
- W3213237933 hasPublicationYear "2021" @default.
- W3213237933 type Work @default.
- W3213237933 sameAs 3213237933 @default.
- W3213237933 citedByCount "4" @default.
- W3213237933 countsByYear W32132379332021 @default.
- W3213237933 countsByYear W32132379332022 @default.
- W3213237933 crossrefType "journal-article" @default.
- W3213237933 hasAuthorship W3213237933A5016223207 @default.
- W3213237933 hasAuthorship W3213237933A5016794987 @default.
- W3213237933 hasAuthorship W3213237933A5050990899 @default.
- W3213237933 hasAuthorship W3213237933A5051265675 @default.
- W3213237933 hasAuthorship W3213237933A5056504452 @default.
- W3213237933 hasAuthorship W3213237933A5064264250 @default.
- W3213237933 hasAuthorship W3213237933A5073830471 @default.
- W3213237933 hasBestOaLocation W32132379333 @default.
- W3213237933 hasConcept C108615695 @default.
- W3213237933 hasConcept C111919701 @default.
- W3213237933 hasConcept C127313418 @default.
- W3213237933 hasConcept C127413603 @default.
- W3213237933 hasConcept C131979681 @default.
- W3213237933 hasConcept C138885662 @default.
- W3213237933 hasConcept C144024400 @default.
- W3213237933 hasConcept C146978453 @default.
- W3213237933 hasConcept C154945302 @default.
- W3213237933 hasConcept C16674752 @default.
- W3213237933 hasConcept C2524010 @default.
- W3213237933 hasConcept C2776401178 @default.
- W3213237933 hasConcept C2776748203 @default.
- W3213237933 hasConcept C2779304628 @default.
- W3213237933 hasConcept C28719098 @default.
- W3213237933 hasConcept C31972630 @default.
- W3213237933 hasConcept C33923547 @default.