Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213256740> ?p ?o ?g. }
- W3213256740 endingPage "11202" @default.
- W3213256740 startingPage "11190" @default.
- W3213256740 abstract "Novel empirical path-loss and root mean square delay spread (RDS) models for smart office scenarios are proposed. The effects of person density on the path loss and RDS are investigated based on the extensive measurements at 2.3–2.5 GHz. First, both of the measured path loss and RDS data are modeled as the dual log-distance functions. It is caused by the regular structure and furniture in the office environment. Second, in the proposed path-loss model, the path-loss exponents and the additional attenuation factor are modeled as quadratic functions of the person density. Meanwhile, the RDS is found to be uncorrelated with the person density. These phenomena reveal that the persons in the environments can be regarded as absorbers rather than scatters. Then, the accuracy of the proposed models is validated by the measured data and compared with two traditional models. Finally, the effect of the persons’ movements on the path loss and RDS is investigated, and the proposed models are extended to millimeter wave bands by a ray tracing technology. The proposed models and results can provide necessary information for link budget and algorithm design for the Internet of Things smart office scenarios." @default.
- W3213256740 created "2021-11-22" @default.
- W3213256740 creator A5023363049 @default.
- W3213256740 creator A5025671805 @default.
- W3213256740 creator A5034360169 @default.
- W3213256740 creator A5065626949 @default.
- W3213256740 creator A5076663408 @default.
- W3213256740 creator A5076863688 @default.
- W3213256740 date "2022-07-01" @default.
- W3213256740 modified "2023-10-17" @default.
- W3213256740 title "Person Density Dependency on Path Loss and Root Mean Square Delay Spread for Smart Office Scenarios" @default.
- W3213256740 cites W126703173 @default.
- W3213256740 cites W1566890561 @default.
- W3213256740 cites W1837370074 @default.
- W3213256740 cites W1966880054 @default.
- W3213256740 cites W2000214870 @default.
- W3213256740 cites W2042529459 @default.
- W3213256740 cites W2053604973 @default.
- W3213256740 cites W2066487161 @default.
- W3213256740 cites W2072910538 @default.
- W3213256740 cites W2100997422 @default.
- W3213256740 cites W2102449144 @default.
- W3213256740 cites W2110618891 @default.
- W3213256740 cites W2127362841 @default.
- W3213256740 cites W2147016173 @default.
- W3213256740 cites W2160576915 @default.
- W3213256740 cites W2171941957 @default.
- W3213256740 cites W2173715883 @default.
- W3213256740 cites W2417266862 @default.
- W3213256740 cites W2569901261 @default.
- W3213256740 cites W2613005261 @default.
- W3213256740 cites W2742061476 @default.
- W3213256740 cites W2771003058 @default.
- W3213256740 cites W2784081410 @default.
- W3213256740 cites W2899188436 @default.
- W3213256740 cites W2903386825 @default.
- W3213256740 cites W2907278497 @default.
- W3213256740 cites W2942810409 @default.
- W3213256740 cites W2974084046 @default.
- W3213256740 cites W2978981835 @default.
- W3213256740 cites W2979924431 @default.
- W3213256740 cites W2999274415 @default.
- W3213256740 cites W3006548891 @default.
- W3213256740 cites W3011162536 @default.
- W3213256740 cites W3088968802 @default.
- W3213256740 cites W3089248281 @default.
- W3213256740 cites W3102475407 @default.
- W3213256740 cites W3108492911 @default.
- W3213256740 cites W3112680140 @default.
- W3213256740 cites W3121424280 @default.
- W3213256740 cites W3135725526 @default.
- W3213256740 cites W3160155847 @default.
- W3213256740 doi "https://doi.org/10.1109/jiot.2021.3125750" @default.
- W3213256740 hasPublicationYear "2022" @default.
- W3213256740 type Work @default.
- W3213256740 sameAs 3213256740 @default.
- W3213256740 citedByCount "1" @default.
- W3213256740 countsByYear W32132567402023 @default.
- W3213256740 crossrefType "journal-article" @default.
- W3213256740 hasAuthorship W3213256740A5023363049 @default.
- W3213256740 hasAuthorship W3213256740A5025671805 @default.
- W3213256740 hasAuthorship W3213256740A5034360169 @default.
- W3213256740 hasAuthorship W3213256740A5065626949 @default.
- W3213256740 hasAuthorship W3213256740A5076663408 @default.
- W3213256740 hasAuthorship W3213256740A5076863688 @default.
- W3213256740 hasConcept C105795698 @default.
- W3213256740 hasConcept C11413529 @default.
- W3213256740 hasConcept C114614502 @default.
- W3213256740 hasConcept C11577676 @default.
- W3213256740 hasConcept C119599485 @default.
- W3213256740 hasConcept C120665830 @default.
- W3213256740 hasConcept C121332964 @default.
- W3213256740 hasConcept C127413603 @default.
- W3213256740 hasConcept C135692309 @default.
- W3213256740 hasConcept C139945424 @default.
- W3213256740 hasConcept C184652730 @default.
- W3213256740 hasConcept C184720557 @default.
- W3213256740 hasConcept C194273485 @default.
- W3213256740 hasConcept C2524010 @default.
- W3213256740 hasConcept C2777735758 @default.
- W3213256740 hasConcept C31258907 @default.
- W3213256740 hasConcept C33923547 @default.
- W3213256740 hasConcept C41008148 @default.
- W3213256740 hasConcept C44154836 @default.
- W3213256740 hasConcept C555944384 @default.
- W3213256740 hasConcept C71907059 @default.
- W3213256740 hasConcept C76155785 @default.
- W3213256740 hasConcept C79403827 @default.
- W3213256740 hasConceptScore W3213256740C105795698 @default.
- W3213256740 hasConceptScore W3213256740C11413529 @default.
- W3213256740 hasConceptScore W3213256740C114614502 @default.
- W3213256740 hasConceptScore W3213256740C11577676 @default.
- W3213256740 hasConceptScore W3213256740C119599485 @default.
- W3213256740 hasConceptScore W3213256740C120665830 @default.
- W3213256740 hasConceptScore W3213256740C121332964 @default.
- W3213256740 hasConceptScore W3213256740C127413603 @default.
- W3213256740 hasConceptScore W3213256740C135692309 @default.
- W3213256740 hasConceptScore W3213256740C139945424 @default.