Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213284851> ?p ?o ?g. }
- W3213284851 abstract "Charge-density waves (CDWs) in Weyl semimetals (WSMs) have been shown to induce an exotic axionic insulating phase in which the sliding mode (phason) of the CDW acts as a dynamical axion field, giving rise to a large positive magneto-conductance [Wang et al., Phys. Rev. B 87, 161107(R) (2013); Roy et al., Phys. Rev. B 92, 125141 (2015); J. Gooth et al., Nature 575, 315 (2019)]. In this work, we predict that dynamical strain can induce a bulk orbital magnetization in time-reversal- (TR-) invariant WSMs that are gapped by a CDW. We term this effect the dynamical piezomagnetic effect (DPME). Unlike in [J. Gooth et al., Nature 575, 315 (2019)], the DPME introduced in this work occurs in a bulk-constant (i.e., static and spatially homogeneous in the bulk) CDW, and does not rely on fluctuations, such as a phason. By studying the low-energy effective theory and a minimal tight-binding (TB) model, we find that the DPME originates from an effective valley axion field that couples the electromagnetic gauge field with a strain-induced pseudo-gauge field. In particular, whereas the piezoelectric effects studied in previous works are characterized by 2D Berry curvature, the DPME represents the first example of a fundamentally 3D strain effect originating from the Chern-Simons 3-form. We further find that the DPME has a discontinuous change at a critical value of the phase of the CDW order parameter. We demonstrate that, when there is a jump in the DPME, the surface of the system undergoes a topological quantum phase transition (TQPT), while the bulk remains gapped. Hence, the DPME provides a bulk signature of the boundary TQPT in a TR-invariant Weyl-CDW." @default.
- W3213284851 created "2021-11-22" @default.
- W3213284851 creator A5032301924 @default.
- W3213284851 creator A5082331436 @default.
- W3213284851 creator A5084762702 @default.
- W3213284851 date "2021-11-05" @default.
- W3213284851 modified "2023-10-15" @default.
- W3213284851 title "Dynamical piezomagnetic effect in time-reversal-invariant Weyl semimetals with axionic charge density waves" @default.
- W3213284851 cites W1514707913 @default.
- W3213284851 cites W1519349854 @default.
- W3213284851 cites W1529147870 @default.
- W3213284851 cites W1567637531 @default.
- W3213284851 cites W1612996888 @default.
- W3213284851 cites W1858384429 @default.
- W3213284851 cites W1878730722 @default.
- W3213284851 cites W1891749393 @default.
- W3213284851 cites W1946521755 @default.
- W3213284851 cites W1947356936 @default.
- W3213284851 cites W1950234332 @default.
- W3213284851 cites W1970188810 @default.
- W3213284851 cites W1973490797 @default.
- W3213284851 cites W1976291341 @default.
- W3213284851 cites W2000564135 @default.
- W3213284851 cites W2008188057 @default.
- W3213284851 cites W2020332193 @default.
- W3213284851 cites W2027639150 @default.
- W3213284851 cites W2037807652 @default.
- W3213284851 cites W2045067079 @default.
- W3213284851 cites W2047263191 @default.
- W3213284851 cites W2048073295 @default.
- W3213284851 cites W2050874073 @default.
- W3213284851 cites W2058264795 @default.
- W3213284851 cites W2061000251 @default.
- W3213284851 cites W2074159413 @default.
- W3213284851 cites W2082462831 @default.
- W3213284851 cites W2086354538 @default.
- W3213284851 cites W2088198211 @default.
- W3213284851 cites W2101893110 @default.
- W3213284851 cites W2102074887 @default.
- W3213284851 cites W2103560360 @default.
- W3213284851 cites W2110720831 @default.
- W3213284851 cites W2123756409 @default.
- W3213284851 cites W2127594490 @default.
- W3213284851 cites W2132568564 @default.
- W3213284851 cites W2143547371 @default.
- W3213284851 cites W2149260107 @default.
- W3213284851 cites W2223654679 @default.
- W3213284851 cites W2302492125 @default.
- W3213284851 cites W2339298743 @default.
- W3213284851 cites W2410933747 @default.
- W3213284851 cites W2464665418 @default.
- W3213284851 cites W2480432849 @default.
- W3213284851 cites W2493139684 @default.
- W3213284851 cites W2526322241 @default.
- W3213284851 cites W2557889131 @default.
- W3213284851 cites W2735392874 @default.
- W3213284851 cites W2746713678 @default.
- W3213284851 cites W2752013588 @default.
- W3213284851 cites W2753790654 @default.
- W3213284851 cites W2764014391 @default.
- W3213284851 cites W2794514492 @default.
- W3213284851 cites W2810335640 @default.
- W3213284851 cites W2888118177 @default.
- W3213284851 cites W2891128177 @default.
- W3213284851 cites W2894044253 @default.
- W3213284851 cites W2894482543 @default.
- W3213284851 cites W2916933884 @default.
- W3213284851 cites W2923485233 @default.
- W3213284851 cites W2937793707 @default.
- W3213284851 cites W2948983286 @default.
- W3213284851 cites W2950100175 @default.
- W3213284851 cites W2970920520 @default.
- W3213284851 cites W2978347532 @default.
- W3213284851 cites W2982334356 @default.
- W3213284851 cites W2985296147 @default.
- W3213284851 cites W2990517558 @default.
- W3213284851 cites W2995553809 @default.
- W3213284851 cites W3009872529 @default.
- W3213284851 cites W3017822023 @default.
- W3213284851 cites W3042674367 @default.
- W3213284851 cites W3098742776 @default.
- W3213284851 cites W3099997798 @default.
- W3213284851 cites W3101113424 @default.
- W3213284851 cites W3102328419 @default.
- W3213284851 cites W3102685377 @default.
- W3213284851 cites W3104681729 @default.
- W3213284851 cites W3105274319 @default.
- W3213284851 cites W3106140216 @default.
- W3213284851 cites W3109108182 @default.
- W3213284851 cites W3121886585 @default.
- W3213284851 cites W3122911073 @default.
- W3213284851 cites W3124672759 @default.
- W3213284851 cites W3126503005 @default.
- W3213284851 cites W3136921276 @default.
- W3213284851 cites W4236029003 @default.
- W3213284851 cites W4297439908 @default.
- W3213284851 cites W807959216 @default.
- W3213284851 doi "https://doi.org/10.1103/physrevb.104.174406" @default.
- W3213284851 hasPublicationYear "2021" @default.
- W3213284851 type Work @default.