Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213302606> ?p ?o ?g. }
- W3213302606 endingPage "102304" @default.
- W3213302606 startingPage "102304" @default.
- W3213302606 abstract "Disease heterogeneity is a significant obstacle to understanding pathological processes and delivering precision diagnostics and treatment. Clustering methods have gained popularity for stratifying patients into subpopulations (i.e., subtypes) of brain diseases using imaging data. However, unsupervised clustering approaches are often confounded by anatomical and functional variations not related to a disease or pathology of interest. Semi-supervised clustering techniques have been proposed to overcome this and, therefore, capture disease-specific patterns more effectively. An additional limitation of both unsupervised and semi-supervised conventional machine learning methods is that they typically model, learn and infer from data using a basis of feature sets pre-defined at a fixed anatomical or functional scale (e.g., atlas-based regions of interest). Herein we propose a novel method, “Multi-scAle heteroGeneity analysIs and Clustering” (MAGIC), to depict the multi-scale presentation of disease heterogeneity, which builds on a previously proposed semi-supervised clustering method, HYDRA. It derives multi-scale and clinically interpretable feature representations and exploits a double-cyclic optimization procedure to effectively drive identification of inter-scale-consistent disease subtypes. More importantly, to understand the conditions under which the clustering model can estimate true heterogeneity related to diseases, we conducted extensive and systematic semi-simulated experiments to evaluate the proposed method on a sizeable healthy control sample from the UK Biobank (N = 4403). We then applied MAGIC to imaging data from Alzheimer's disease (ADNI, N = 1728) and schizophrenia (PHENOM, N = 1166) patients to demonstrate its potential and challenges in dissecting the neuroanatomical heterogeneity of common brain diseases. Taken together, we aim to provide guidance regarding when such analyses can succeed or should be taken with caution. The code of the proposed method is publicly available at https://github.com/anbai106/MAGIC." @default.
- W3213302606 created "2021-11-22" @default.
- W3213302606 creator A5002543602 @default.
- W3213302606 creator A5011264157 @default.
- W3213302606 creator A5012962437 @default.
- W3213302606 creator A5014286457 @default.
- W3213302606 creator A5018607314 @default.
- W3213302606 creator A5027768629 @default.
- W3213302606 creator A5028182316 @default.
- W3213302606 creator A5028430186 @default.
- W3213302606 creator A5028439268 @default.
- W3213302606 creator A5029649151 @default.
- W3213302606 creator A5030421132 @default.
- W3213302606 creator A5031613969 @default.
- W3213302606 creator A5031953318 @default.
- W3213302606 creator A5032123695 @default.
- W3213302606 creator A5032267453 @default.
- W3213302606 creator A5034999945 @default.
- W3213302606 creator A5035352293 @default.
- W3213302606 creator A5037974362 @default.
- W3213302606 creator A5039906500 @default.
- W3213302606 creator A5046782580 @default.
- W3213302606 creator A5048182376 @default.
- W3213302606 creator A5055736039 @default.
- W3213302606 creator A5057578473 @default.
- W3213302606 creator A5058433895 @default.
- W3213302606 creator A5074268098 @default.
- W3213302606 creator A5081027256 @default.
- W3213302606 creator A5081417100 @default.
- W3213302606 creator A5084369967 @default.
- W3213302606 creator A5084652393 @default.
- W3213302606 creator A5087792260 @default.
- W3213302606 creator A5091561757 @default.
- W3213302606 date "2022-01-01" @default.
- W3213302606 modified "2023-10-16" @default.
- W3213302606 title "Multi-scale semi-supervised clustering of brain images: Deriving disease subtypes" @default.
- W3213302606 cites W1838825000 @default.
- W3213302606 cites W1855251267 @default.
- W3213302606 cites W1876943069 @default.
- W3213302606 cites W1968811469 @default.
- W3213302606 cites W1979062697 @default.
- W3213302606 cites W1980114101 @default.
- W3213302606 cites W2006393891 @default.
- W3213302606 cites W2006931708 @default.
- W3213302606 cites W2010176747 @default.
- W3213302606 cites W2014668809 @default.
- W3213302606 cites W2014909648 @default.
- W3213302606 cites W2019583087 @default.
- W3213302606 cites W2027675577 @default.
- W3213302606 cites W2033184625 @default.
- W3213302606 cites W2035890032 @default.
- W3213302606 cites W2045333811 @default.
- W3213302606 cites W2051254098 @default.
- W3213302606 cites W2056423424 @default.
- W3213302606 cites W2060281245 @default.
- W3213302606 cites W2063243332 @default.
- W3213302606 cites W2066081650 @default.
- W3213302606 cites W2069129485 @default.
- W3213302606 cites W2069317808 @default.
- W3213302606 cites W2069743064 @default.
- W3213302606 cites W2070448139 @default.
- W3213302606 cites W2075444764 @default.
- W3213302606 cites W2094637188 @default.
- W3213302606 cites W2105115268 @default.
- W3213302606 cites W2113127248 @default.
- W3213302606 cites W2113345170 @default.
- W3213302606 cites W2116649573 @default.
- W3213302606 cites W2117140276 @default.
- W3213302606 cites W2117340355 @default.
- W3213302606 cites W2117478443 @default.
- W3213302606 cites W2119848633 @default.
- W3213302606 cites W2120199131 @default.
- W3213302606 cites W2122328291 @default.
- W3213302606 cites W2123197173 @default.
- W3213302606 cites W2145725490 @default.
- W3213302606 cites W2145728067 @default.
- W3213302606 cites W2148080251 @default.
- W3213302606 cites W2153171432 @default.
- W3213302606 cites W2153635508 @default.
- W3213302606 cites W2155149980 @default.
- W3213302606 cites W2167393047 @default.
- W3213302606 cites W2196038229 @default.
- W3213302606 cites W2207181630 @default.
- W3213302606 cites W2275670668 @default.
- W3213302606 cites W2281357465 @default.
- W3213302606 cites W2301358467 @default.
- W3213302606 cites W2316633345 @default.
- W3213302606 cites W2317568490 @default.
- W3213302606 cites W2340565534 @default.
- W3213302606 cites W2473313434 @default.
- W3213302606 cites W2510445737 @default.
- W3213302606 cites W2519051677 @default.
- W3213302606 cites W2521236458 @default.
- W3213302606 cites W2522628945 @default.
- W3213302606 cites W2523410136 @default.
- W3213302606 cites W2528250414 @default.
- W3213302606 cites W2563596824 @default.
- W3213302606 cites W2567403639 @default.