Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213351657> ?p ?o ?g. }
- W3213351657 abstract "The emergence of additive manufacture (AM) for metallic material enables components of near arbitrary complexity to be produced. This has potential to disrupt traditional engineering approaches. However, metallic AM components exhibit greater levels of variation in their geometric and mechanical properties compared to standard components, which is not yet well understood. This uncertainty poses a fundamental barrier to potential users of the material, since extensive post-manufacture testing is currently required to ensure safety standards are met. Taking an interdisciplinary approach that combines probabilistic mechanics and uncertainty quantification, we demonstrate that intrinsic variation in AM steel can be well described by a generative statistical model that enables the quality of a design to be predicted before manufacture. Specifically, the geometric variation in the material can be described by an anisotropic spatial random field with oscillatory covariance structure, and the mechanical behaviour by a stochastic anisotropic elasto-plastic material model. The fitted generative model is validated on a held-out experimental dataset and our results underscore the need to combine both statistical and physics-based modelling in the characterization of new AM steel products." @default.
- W3213351657 created "2021-11-22" @default.
- W3213351657 creator A5002806054 @default.
- W3213351657 creator A5003445227 @default.
- W3213351657 creator A5014831378 @default.
- W3213351657 creator A5028485109 @default.
- W3213351657 creator A5029103776 @default.
- W3213351657 creator A5029843715 @default.
- W3213351657 creator A5048001777 @default.
- W3213351657 creator A5049218014 @default.
- W3213351657 creator A5050544926 @default.
- W3213351657 creator A5074030261 @default.
- W3213351657 creator A5078786746 @default.
- W3213351657 date "2021-11-01" @default.
- W3213351657 modified "2023-10-18" @default.
- W3213351657 title "A data-centric approach to generative modelling for 3D-printed steel" @default.
- W3213351657 cites W1711375714 @default.
- W3213351657 cites W1747046542 @default.
- W3213351657 cites W1771480913 @default.
- W3213351657 cites W1837874438 @default.
- W3213351657 cites W1970789124 @default.
- W3213351657 cites W1974656313 @default.
- W3213351657 cites W1991610061 @default.
- W3213351657 cites W2014577099 @default.
- W3213351657 cites W2037145205 @default.
- W3213351657 cites W2047641139 @default.
- W3213351657 cites W2063318680 @default.
- W3213351657 cites W2070445316 @default.
- W3213351657 cites W2071544114 @default.
- W3213351657 cites W2078307486 @default.
- W3213351657 cites W2081264083 @default.
- W3213351657 cites W2086998939 @default.
- W3213351657 cites W2096650374 @default.
- W3213351657 cites W2098684142 @default.
- W3213351657 cites W2109595481 @default.
- W3213351657 cites W2131584545 @default.
- W3213351657 cites W2303654018 @default.
- W3213351657 cites W2311274083 @default.
- W3213351657 cites W2475009926 @default.
- W3213351657 cites W2507048138 @default.
- W3213351657 cites W2605907109 @default.
- W3213351657 cites W2607774703 @default.
- W3213351657 cites W2685024654 @default.
- W3213351657 cites W2724418474 @default.
- W3213351657 cites W2727686829 @default.
- W3213351657 cites W2753246113 @default.
- W3213351657 cites W2765703872 @default.
- W3213351657 cites W2789533602 @default.
- W3213351657 cites W2884258664 @default.
- W3213351657 cites W2900608483 @default.
- W3213351657 cites W2902298309 @default.
- W3213351657 cites W2935779091 @default.
- W3213351657 cites W2960260311 @default.
- W3213351657 cites W2963824728 @default.
- W3213351657 cites W2999772350 @default.
- W3213351657 cites W3013475724 @default.
- W3213351657 cites W3035852592 @default.
- W3213351657 cites W3042205812 @default.
- W3213351657 cites W3092694633 @default.
- W3213351657 cites W3101408490 @default.
- W3213351657 cites W41991338 @default.
- W3213351657 cites W4248892168 @default.
- W3213351657 doi "https://doi.org/10.1098/rspa.2021.0444" @default.
- W3213351657 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35153595" @default.
- W3213351657 hasPublicationYear "2021" @default.
- W3213351657 type Work @default.
- W3213351657 sameAs 3213351657 @default.
- W3213351657 citedByCount "8" @default.
- W3213351657 countsByYear W32133516572021 @default.
- W3213351657 countsByYear W32133516572022 @default.
- W3213351657 countsByYear W32133516572023 @default.
- W3213351657 crossrefType "journal-article" @default.
- W3213351657 hasAuthorship W3213351657A5002806054 @default.
- W3213351657 hasAuthorship W3213351657A5003445227 @default.
- W3213351657 hasAuthorship W3213351657A5014831378 @default.
- W3213351657 hasAuthorship W3213351657A5028485109 @default.
- W3213351657 hasAuthorship W3213351657A5029103776 @default.
- W3213351657 hasAuthorship W3213351657A5029843715 @default.
- W3213351657 hasAuthorship W3213351657A5048001777 @default.
- W3213351657 hasAuthorship W3213351657A5049218014 @default.
- W3213351657 hasAuthorship W3213351657A5050544926 @default.
- W3213351657 hasAuthorship W3213351657A5074030261 @default.
- W3213351657 hasAuthorship W3213351657A5078786746 @default.
- W3213351657 hasBestOaLocation W32133516571 @default.
- W3213351657 hasConcept C105795698 @default.
- W3213351657 hasConcept C114289077 @default.
- W3213351657 hasConcept C121332964 @default.
- W3213351657 hasConcept C127413603 @default.
- W3213351657 hasConcept C154945302 @default.
- W3213351657 hasConcept C167966045 @default.
- W3213351657 hasConcept C171250308 @default.
- W3213351657 hasConcept C178650346 @default.
- W3213351657 hasConcept C192562407 @default.
- W3213351657 hasConcept C202444582 @default.
- W3213351657 hasConcept C2778334786 @default.
- W3213351657 hasConcept C2780841128 @default.
- W3213351657 hasConcept C33923547 @default.
- W3213351657 hasConcept C39890363 @default.
- W3213351657 hasConcept C41008148 @default.
- W3213351657 hasConcept C44870925 @default.