Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213371454> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3213371454 abstract "On the verge of technology, manufacturing industries revolutionize into smart industries, which create a large amount of multivariate time-series data. However, due to sensors’ failure, extreme environment, etc., the collected data are incomplete and have missing values at several instances that result in an erroneous analysis of the data. The key to resolving this problem is data imputation, i.e., replacing the missing values with synthetic values. In this paper, we introduce a generative adversarial network (GAN) framework to generate the synthetic data pertaining to the data imputation. Over the last decade, GANs have presented excellent results to generate synthetic data for images. By following this stream of research, we consider multivariate time-series data from a steel manufacturing industry and propose a GAN-based data imputation technique. We perform several computer simulations to validate and compare the performance of the proposed GAN method with state-of-the-art data imputation techniques." @default.
- W3213371454 created "2021-11-22" @default.
- W3213371454 creator A5054712460 @default.
- W3213371454 creator A5054886494 @default.
- W3213371454 creator A5088577145 @default.
- W3213371454 date "2021-10-13" @default.
- W3213371454 modified "2023-10-04" @default.
- W3213371454 title "Missing Data Imputation for Real Time-series Data in a Steel Industry using Generative Adversarial Networks" @default.
- W3213371454 cites W1977185509 @default.
- W3213371454 cites W2034303004 @default.
- W3213371454 cites W2115098571 @default.
- W3213371454 cites W2146332392 @default.
- W3213371454 cites W2593414223 @default.
- W3213371454 cites W2611104282 @default.
- W3213371454 cites W2909606161 @default.
- W3213371454 cites W2921353139 @default.
- W3213371454 cites W2963470893 @default.
- W3213371454 cites W2963633072 @default.
- W3213371454 cites W2978834409 @default.
- W3213371454 cites W3038129359 @default.
- W3213371454 cites W3111586086 @default.
- W3213371454 cites W3155002928 @default.
- W3213371454 doi "https://doi.org/10.1109/iecon48115.2021.9589716" @default.
- W3213371454 hasPublicationYear "2021" @default.
- W3213371454 type Work @default.
- W3213371454 sameAs 3213371454 @default.
- W3213371454 citedByCount "5" @default.
- W3213371454 countsByYear W32133714542022 @default.
- W3213371454 countsByYear W32133714542023 @default.
- W3213371454 crossrefType "proceedings-article" @default.
- W3213371454 hasAuthorship W3213371454A5054712460 @default.
- W3213371454 hasAuthorship W3213371454A5054886494 @default.
- W3213371454 hasAuthorship W3213371454A5088577145 @default.
- W3213371454 hasConcept C108583219 @default.
- W3213371454 hasConcept C119857082 @default.
- W3213371454 hasConcept C124101348 @default.
- W3213371454 hasConcept C151406439 @default.
- W3213371454 hasConcept C154945302 @default.
- W3213371454 hasConcept C161584116 @default.
- W3213371454 hasConcept C2988773926 @default.
- W3213371454 hasConcept C37736160 @default.
- W3213371454 hasConcept C39890363 @default.
- W3213371454 hasConcept C41008148 @default.
- W3213371454 hasConcept C58041806 @default.
- W3213371454 hasConcept C67186912 @default.
- W3213371454 hasConcept C77088390 @default.
- W3213371454 hasConcept C9357733 @default.
- W3213371454 hasConceptScore W3213371454C108583219 @default.
- W3213371454 hasConceptScore W3213371454C119857082 @default.
- W3213371454 hasConceptScore W3213371454C124101348 @default.
- W3213371454 hasConceptScore W3213371454C151406439 @default.
- W3213371454 hasConceptScore W3213371454C154945302 @default.
- W3213371454 hasConceptScore W3213371454C161584116 @default.
- W3213371454 hasConceptScore W3213371454C2988773926 @default.
- W3213371454 hasConceptScore W3213371454C37736160 @default.
- W3213371454 hasConceptScore W3213371454C39890363 @default.
- W3213371454 hasConceptScore W3213371454C41008148 @default.
- W3213371454 hasConceptScore W3213371454C58041806 @default.
- W3213371454 hasConceptScore W3213371454C67186912 @default.
- W3213371454 hasConceptScore W3213371454C77088390 @default.
- W3213371454 hasConceptScore W3213371454C9357733 @default.
- W3213371454 hasLocation W32133714541 @default.
- W3213371454 hasOpenAccess W3213371454 @default.
- W3213371454 hasPrimaryLocation W32133714541 @default.
- W3213371454 hasRelatedWork W2159586267 @default.
- W3213371454 hasRelatedWork W2786769798 @default.
- W3213371454 hasRelatedWork W2890686416 @default.
- W3213371454 hasRelatedWork W2901368259 @default.
- W3213371454 hasRelatedWork W3016305693 @default.
- W3213371454 hasRelatedWork W3121341047 @default.
- W3213371454 hasRelatedWork W3156291593 @default.
- W3213371454 hasRelatedWork W3198184493 @default.
- W3213371454 hasRelatedWork W4220812973 @default.
- W3213371454 hasRelatedWork W4284688182 @default.
- W3213371454 isParatext "false" @default.
- W3213371454 isRetracted "false" @default.
- W3213371454 magId "3213371454" @default.
- W3213371454 workType "article" @default.