Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213410147> ?p ?o ?g. }
- W3213410147 abstract "Macroscopic spin ensembles with brainlike features such as nonlinearity, stochasticity, self-oscillations, memory effects, and plasticity, form attractive platforms for neuromorphic computing. We propose an artificial neural network consisting of electric contacts on conducting films with tunable magnetic textures that is superior to conventional implementations, because it does not require resource-demanding external computations during training. Simulations show that the feedback between anisotropic magnetoresistance and current-induced spin-transfer torque in malleable magnetic textures autonomously trains the network according to the Hebbian learning principle. We illustrate the idea by simulating the pattern recognition by a four-node Hopfield neural network." @default.
- W3213410147 created "2021-11-22" @default.
- W3213410147 creator A5027697869 @default.
- W3213410147 creator A5061419535 @default.
- W3213410147 creator A5088416776 @default.
- W3213410147 date "2021-11-16" @default.
- W3213410147 modified "2023-10-18" @default.
- W3213410147 title "Hopfield neural network in magnetic textures with intrinsic Hebbian learning" @default.
- W3213410147 cites W1486852018 @default.
- W3213410147 cites W1542981317 @default.
- W3213410147 cites W1604692062 @default.
- W3213410147 cites W1671785734 @default.
- W3213410147 cites W1974144311 @default.
- W3213410147 cites W1992265433 @default.
- W3213410147 cites W2000183095 @default.
- W3213410147 cites W2000564135 @default.
- W3213410147 cites W2021309861 @default.
- W3213410147 cites W2027896245 @default.
- W3213410147 cites W2038561289 @default.
- W3213410147 cites W2069129925 @default.
- W3213410147 cites W2087010086 @default.
- W3213410147 cites W2088081187 @default.
- W3213410147 cites W2089822728 @default.
- W3213410147 cites W2109423714 @default.
- W3213410147 cites W2124331661 @default.
- W3213410147 cites W2128084896 @default.
- W3213410147 cites W2260028708 @default.
- W3213410147 cites W2323986115 @default.
- W3213410147 cites W2331437931 @default.
- W3213410147 cites W2507278625 @default.
- W3213410147 cites W2508890046 @default.
- W3213410147 cites W2584998015 @default.
- W3213410147 cites W2624494552 @default.
- W3213410147 cites W2635159431 @default.
- W3213410147 cites W2698166745 @default.
- W3213410147 cites W2735806552 @default.
- W3213410147 cites W2769029411 @default.
- W3213410147 cites W2778935320 @default.
- W3213410147 cites W2785141883 @default.
- W3213410147 cites W2792334128 @default.
- W3213410147 cites W2796301411 @default.
- W3213410147 cites W2798864635 @default.
- W3213410147 cites W2897957858 @default.
- W3213410147 cites W2898076131 @default.
- W3213410147 cites W2902888152 @default.
- W3213410147 cites W2936320840 @default.
- W3213410147 cites W2963252477 @default.
- W3213410147 cites W2973749712 @default.
- W3213410147 cites W2991101131 @default.
- W3213410147 cites W3023348705 @default.
- W3213410147 cites W3029867615 @default.
- W3213410147 cites W3046582767 @default.
- W3213410147 cites W3100557872 @default.
- W3213410147 cites W3100729098 @default.
- W3213410147 cites W3101192218 @default.
- W3213410147 cites W3103607501 @default.
- W3213410147 cites W3122531130 @default.
- W3213410147 cites W3169104110 @default.
- W3213410147 cites W4210956562 @default.
- W3213410147 doi "https://doi.org/10.1103/physrevb.104.l180405" @default.
- W3213410147 hasPublicationYear "2021" @default.
- W3213410147 type Work @default.
- W3213410147 sameAs 3213410147 @default.
- W3213410147 citedByCount "5" @default.
- W3213410147 countsByYear W32134101472022 @default.
- W3213410147 countsByYear W32134101472023 @default.
- W3213410147 crossrefType "journal-article" @default.
- W3213410147 hasAuthorship W3213410147A5027697869 @default.
- W3213410147 hasAuthorship W3213410147A5061419535 @default.
- W3213410147 hasAuthorship W3213410147A5088416776 @default.
- W3213410147 hasBestOaLocation W32134101472 @default.
- W3213410147 hasConcept C111437709 @default.
- W3213410147 hasConcept C11413529 @default.
- W3213410147 hasConcept C115260700 @default.
- W3213410147 hasConcept C117958382 @default.
- W3213410147 hasConcept C121332964 @default.
- W3213410147 hasConcept C147168706 @default.
- W3213410147 hasConcept C151927369 @default.
- W3213410147 hasConcept C154945302 @default.
- W3213410147 hasConcept C177973122 @default.
- W3213410147 hasConcept C33766855 @default.
- W3213410147 hasConcept C3832189 @default.
- W3213410147 hasConcept C41008148 @default.
- W3213410147 hasConcept C45374587 @default.
- W3213410147 hasConcept C46421273 @default.
- W3213410147 hasConcept C50644808 @default.
- W3213410147 hasConcept C62520636 @default.
- W3213410147 hasConceptScore W3213410147C111437709 @default.
- W3213410147 hasConceptScore W3213410147C11413529 @default.
- W3213410147 hasConceptScore W3213410147C115260700 @default.
- W3213410147 hasConceptScore W3213410147C117958382 @default.
- W3213410147 hasConceptScore W3213410147C121332964 @default.
- W3213410147 hasConceptScore W3213410147C147168706 @default.
- W3213410147 hasConceptScore W3213410147C151927369 @default.
- W3213410147 hasConceptScore W3213410147C154945302 @default.
- W3213410147 hasConceptScore W3213410147C177973122 @default.
- W3213410147 hasConceptScore W3213410147C33766855 @default.
- W3213410147 hasConceptScore W3213410147C3832189 @default.
- W3213410147 hasConceptScore W3213410147C41008148 @default.
- W3213410147 hasConceptScore W3213410147C45374587 @default.