Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213412084> ?p ?o ?g. }
- W3213412084 endingPage "4917" @default.
- W3213412084 startingPage "4903" @default.
- W3213412084 abstract "Comparing competing mathematical models of complex processes is a shared goal among many branches of science. The Bayesian probabilistic framework offers a principled way to perform model comparison and extract useful metrics for guiding decisions. However, many interesting models are intractable with standard Bayesian methods, as they lack a closed-form likelihood function or the likelihood is computationally too expensive to evaluate. In this work, we propose a novel method for performing Bayesian model comparison using specialized deep learning architectures. Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset. Moreover, it requires no hand-crafted summary statistics of the data and is designed to amortize the cost of simulation over multiple models, datasets, and dataset sizes. This makes the method especially effective in scenarios where model fit needs to be assessed for a large number of datasets, so that case-based inference is practically infeasible. Finally, we propose a novel way to measure epistemic uncertainty in model comparison problems. We demonstrate the utility of our method on toy examples and simulated data from nontrivial models from cognitive science and single-cell neuroscience. We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work. We argue that our framework can enhance and enrich model-based analysis and inference in many fields dealing with computational models of natural processes. We further argue that the proposed measure of epistemic uncertainty provides a unique proxy to quantify absolute evidence even in a framework which assumes that the true data-generating model is within a finite set of candidate models." @default.
- W3213412084 created "2021-11-22" @default.
- W3213412084 creator A5004723202 @default.
- W3213412084 creator A5010815894 @default.
- W3213412084 creator A5018018859 @default.
- W3213412084 creator A5063080571 @default.
- W3213412084 creator A5079564540 @default.
- W3213412084 creator A5082373943 @default.
- W3213412084 date "2023-08-01" @default.
- W3213412084 modified "2023-10-12" @default.
- W3213412084 title "Amortized Bayesian Model Comparison With Evidential Deep Learning" @default.
- W3213412084 cites W1583759330 @default.
- W3213412084 cites W1677882857 @default.
- W3213412084 cites W1946356339 @default.
- W3213412084 cites W1985940938 @default.
- W3213412084 cites W2013164703 @default.
- W3213412084 cites W2015788805 @default.
- W3213412084 cites W2016219233 @default.
- W3213412084 cites W2025720061 @default.
- W3213412084 cites W2026915078 @default.
- W3213412084 cites W2032616735 @default.
- W3213412084 cites W2045968318 @default.
- W3213412084 cites W2052195764 @default.
- W3213412084 cites W2059511681 @default.
- W3213412084 cites W2109596721 @default.
- W3213412084 cites W2131602953 @default.
- W3213412084 cites W2136582516 @default.
- W3213412084 cites W2136848157 @default.
- W3213412084 cites W2146620998 @default.
- W3213412084 cites W2146831880 @default.
- W3213412084 cites W2157239334 @default.
- W3213412084 cites W2158798384 @default.
- W3213412084 cites W2164653071 @default.
- W3213412084 cites W2203714058 @default.
- W3213412084 cites W2502017989 @default.
- W3213412084 cites W2602422862 @default.
- W3213412084 cites W2739107310 @default.
- W3213412084 cites W2791976732 @default.
- W3213412084 cites W2909235757 @default.
- W3213412084 cites W2922826800 @default.
- W3213412084 cites W2948978827 @default.
- W3213412084 cites W2949631852 @default.
- W3213412084 cites W2950651308 @default.
- W3213412084 cites W2962894765 @default.
- W3213412084 cites W2972946385 @default.
- W3213412084 cites W3013967887 @default.
- W3213412084 cites W3031514878 @default.
- W3213412084 cites W3102737393 @default.
- W3213412084 cites W4248681815 @default.
- W3213412084 cites W4299551239 @default.
- W3213412084 cites W4299600506 @default.
- W3213412084 doi "https://doi.org/10.1109/tnnls.2021.3124052" @default.
- W3213412084 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34767511" @default.
- W3213412084 hasPublicationYear "2023" @default.
- W3213412084 type Work @default.
- W3213412084 sameAs 3213412084 @default.
- W3213412084 citedByCount "8" @default.
- W3213412084 countsByYear W32134120842021 @default.
- W3213412084 countsByYear W32134120842022 @default.
- W3213412084 countsByYear W32134120842023 @default.
- W3213412084 crossrefType "journal-article" @default.
- W3213412084 hasAuthorship W3213412084A5004723202 @default.
- W3213412084 hasAuthorship W3213412084A5010815894 @default.
- W3213412084 hasAuthorship W3213412084A5018018859 @default.
- W3213412084 hasAuthorship W3213412084A5063080571 @default.
- W3213412084 hasAuthorship W3213412084A5079564540 @default.
- W3213412084 hasAuthorship W3213412084A5082373943 @default.
- W3213412084 hasBestOaLocation W32134120841 @default.
- W3213412084 hasConcept C101112237 @default.
- W3213412084 hasConcept C107673813 @default.
- W3213412084 hasConcept C119857082 @default.
- W3213412084 hasConcept C124101348 @default.
- W3213412084 hasConcept C154945302 @default.
- W3213412084 hasConcept C160234255 @default.
- W3213412084 hasConcept C2776214188 @default.
- W3213412084 hasConcept C2779377595 @default.
- W3213412084 hasConcept C2780009758 @default.
- W3213412084 hasConcept C32230216 @default.
- W3213412084 hasConcept C41008148 @default.
- W3213412084 hasConcept C49937458 @default.
- W3213412084 hasConcept C99173435 @default.
- W3213412084 hasConceptScore W3213412084C101112237 @default.
- W3213412084 hasConceptScore W3213412084C107673813 @default.
- W3213412084 hasConceptScore W3213412084C119857082 @default.
- W3213412084 hasConceptScore W3213412084C124101348 @default.
- W3213412084 hasConceptScore W3213412084C154945302 @default.
- W3213412084 hasConceptScore W3213412084C160234255 @default.
- W3213412084 hasConceptScore W3213412084C2776214188 @default.
- W3213412084 hasConceptScore W3213412084C2779377595 @default.
- W3213412084 hasConceptScore W3213412084C2780009758 @default.
- W3213412084 hasConceptScore W3213412084C32230216 @default.
- W3213412084 hasConceptScore W3213412084C41008148 @default.
- W3213412084 hasConceptScore W3213412084C49937458 @default.
- W3213412084 hasConceptScore W3213412084C99173435 @default.
- W3213412084 hasFunder F4320320879 @default.
- W3213412084 hasFunder F4320323664 @default.
- W3213412084 hasIssue "8" @default.
- W3213412084 hasLocation W32134120841 @default.