Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213425801> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W3213425801 abstract "We consider a novel data driven approach for designing learning algorithms that can effectively learn with only a small number of labeled examples. This is crucial for modern machine learning applications where labels are scarce or expensive to obtain. We focus on graph-based techniques, where the unlabeled examples are connected in a graph under the implicit assumption that similar nodes likely have similar labels. Over the past decades, several elegant graph-based semi-supervised learning algorithms for how to infer the labels of the unlabeled examples given the graph and a few labeled examples have been proposed. However, the problem of how to create the graph (which impacts the practical usefulness of these methods significantly) has been relegated to domain-specific art and heuristics and no general principles have been proposed. In this work we present a novel data driven approach for learning the graph and provide strong formal guarantees in both the distributional and online learning formalizations. We show how to leverage problem instances coming from an underlying problem domain to learn the graph hyperparameters from commonly used parametric families of graphs that perform well on new instances coming from the same domain. We obtain low regret and efficient algorithms in the online setting, and generalization guarantees in the distributional setting. We also show how to combine several very different similarity metrics and learn multiple hyperparameters, providing general techniques to apply to large classes of problems. We expect some of the tools and techniques we develop along the way to be of interest beyond semi-supervised learning, for data driven algorithms for combinatorial problems more generally." @default.
- W3213425801 created "2021-11-22" @default.
- W3213425801 creator A5028842579 @default.
- W3213425801 creator A5068544954 @default.
- W3213425801 date "2021-12-06" @default.
- W3213425801 modified "2023-09-24" @default.
- W3213425801 title "Data driven semi-supervised learning" @default.
- W3213425801 hasPublicationYear "2021" @default.
- W3213425801 type Work @default.
- W3213425801 sameAs 3213425801 @default.
- W3213425801 citedByCount "0" @default.
- W3213425801 crossrefType "proceedings-article" @default.
- W3213425801 hasAuthorship W3213425801A5028842579 @default.
- W3213425801 hasAuthorship W3213425801A5068544954 @default.
- W3213425801 hasConcept C111919701 @default.
- W3213425801 hasConcept C119857082 @default.
- W3213425801 hasConcept C127705205 @default.
- W3213425801 hasConcept C132525143 @default.
- W3213425801 hasConcept C153083717 @default.
- W3213425801 hasConcept C154945302 @default.
- W3213425801 hasConcept C41008148 @default.
- W3213425801 hasConcept C58973888 @default.
- W3213425801 hasConcept C80444323 @default.
- W3213425801 hasConceptScore W3213425801C111919701 @default.
- W3213425801 hasConceptScore W3213425801C119857082 @default.
- W3213425801 hasConceptScore W3213425801C127705205 @default.
- W3213425801 hasConceptScore W3213425801C132525143 @default.
- W3213425801 hasConceptScore W3213425801C153083717 @default.
- W3213425801 hasConceptScore W3213425801C154945302 @default.
- W3213425801 hasConceptScore W3213425801C41008148 @default.
- W3213425801 hasConceptScore W3213425801C58973888 @default.
- W3213425801 hasConceptScore W3213425801C80444323 @default.
- W3213425801 hasLocation W32134258011 @default.
- W3213425801 hasOpenAccess W3213425801 @default.
- W3213425801 hasPrimaryLocation W32134258011 @default.
- W3213425801 hasRelatedWork W1589579951 @default.
- W3213425801 hasRelatedWork W1647591404 @default.
- W3213425801 hasRelatedWork W1665715489 @default.
- W3213425801 hasRelatedWork W2069735839 @default.
- W3213425801 hasRelatedWork W2160668399 @default.
- W3213425801 hasRelatedWork W2279754968 @default.
- W3213425801 hasRelatedWork W2471104003 @default.
- W3213425801 hasRelatedWork W2508478068 @default.
- W3213425801 hasRelatedWork W2534803673 @default.
- W3213425801 hasRelatedWork W2604650070 @default.
- W3213425801 hasRelatedWork W2625387573 @default.
- W3213425801 hasRelatedWork W2921627381 @default.
- W3213425801 hasRelatedWork W2995013995 @default.
- W3213425801 hasRelatedWork W3121197195 @default.
- W3213425801 hasRelatedWork W3126412650 @default.
- W3213425801 hasRelatedWork W3138294217 @default.
- W3213425801 hasRelatedWork W3163735432 @default.
- W3213425801 hasRelatedWork W3170826592 @default.
- W3213425801 hasRelatedWork W3204714264 @default.
- W3213425801 hasRelatedWork W36398315 @default.
- W3213425801 hasVolume "34" @default.
- W3213425801 isParatext "false" @default.
- W3213425801 isRetracted "false" @default.
- W3213425801 magId "3213425801" @default.
- W3213425801 workType "article" @default.