Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213440098> ?p ?o ?g. }
- W3213440098 endingPage "1222" @default.
- W3213440098 startingPage "1208" @default.
- W3213440098 abstract "In this manuscript, we proposed an automatic segmentation method which was developed using the depth-wise separable convolution with bottleneck connections. The data were normalized using group normalization for reducing the computational complexities and clipped RELU was used with ceiling capped at 6. The network was trained on the datasets of brain tumor and skin cancer while it was tested on the same as well as different datasets acquired under different environments. Additionally, for the case of the brain tumor, the network was tested on real-time MRI dataset. The quantitative and qualitative analysis of results inferred the superior performance of the proposed network. The mIoU and BF Score were increased by 3% and 4.5% for brain tumor segmentation when the network was tested on the different dataset without retaining. For skin cancer dataset an increment of 3% and 5% was observed in both the evaluation metrics. The results obtained on real-time MRI data of brain tumor showed the improvement of (4.2 ± 0.024)% and (4.6 ± 0.0286)%, respectively, in mIoU and BF score. The proposed model produced accurate boundary and pixel details for medical diagnostic purposes. Experienced radiologists did external validation of the proposed method by comparing the obtained results with the manually segmented images. This computer-assisted approach can save the time and burden of doctors for the diagnosis of cancer." @default.
- W3213440098 created "2021-11-22" @default.
- W3213440098 creator A5009838892 @default.
- W3213440098 creator A5067213990 @default.
- W3213440098 date "2021-11-07" @default.
- W3213440098 modified "2023-09-24" @default.
- W3213440098 title "Computer-Based Segmentation of Cancerous Tissues in Biomedical Images Using Enhanced Deep Learning Model" @default.
- W3213440098 cites W1487448580 @default.
- W3213440098 cites W1498268535 @default.
- W3213440098 cites W1516725721 @default.
- W3213440098 cites W1524094261 @default.
- W3213440098 cites W1815337875 @default.
- W3213440098 cites W1884191083 @default.
- W3213440098 cites W1903029394 @default.
- W3213440098 cites W1909740415 @default.
- W3213440098 cites W1960617859 @default.
- W3213440098 cites W2027839406 @default.
- W3213440098 cites W2036924096 @default.
- W3213440098 cites W2037227137 @default.
- W3213440098 cites W2079842879 @default.
- W3213440098 cites W2080927070 @default.
- W3213440098 cites W2091695913 @default.
- W3213440098 cites W2097117768 @default.
- W3213440098 cites W2112796928 @default.
- W3213440098 cites W2116654471 @default.
- W3213440098 cites W2119823327 @default.
- W3213440098 cites W2123498585 @default.
- W3213440098 cites W2160109814 @default.
- W3213440098 cites W2161514909 @default.
- W3213440098 cites W2166752577 @default.
- W3213440098 cites W2301358467 @default.
- W3213440098 cites W2521587260 @default.
- W3213440098 cites W2531409750 @default.
- W3213440098 cites W2538556778 @default.
- W3213440098 cites W2555182955 @default.
- W3213440098 cites W2618530766 @default.
- W3213440098 cites W2777186991 @default.
- W3213440098 cites W2782833026 @default.
- W3213440098 cites W2883069276 @default.
- W3213440098 cites W2885343725 @default.
- W3213440098 cites W2890352789 @default.
- W3213440098 cites W2892104854 @default.
- W3213440098 cites W2893345206 @default.
- W3213440098 cites W2897204591 @default.
- W3213440098 cites W2913431714 @default.
- W3213440098 cites W2937395268 @default.
- W3213440098 cites W2947263797 @default.
- W3213440098 cites W2963803174 @default.
- W3213440098 cites W2964118901 @default.
- W3213440098 cites W2982805640 @default.
- W3213440098 cites W2988053426 @default.
- W3213440098 cites W3005437975 @default.
- W3213440098 cites W3007943565 @default.
- W3213440098 cites W3010665872 @default.
- W3213440098 cites W3013586057 @default.
- W3213440098 cites W3013608007 @default.
- W3213440098 cites W3015187397 @default.
- W3213440098 cites W3018903933 @default.
- W3213440098 cites W3071727253 @default.
- W3213440098 cites W3086049619 @default.
- W3213440098 cites W3112351389 @default.
- W3213440098 cites W3112600384 @default.
- W3213440098 cites W3129056955 @default.
- W3213440098 cites W3130855234 @default.
- W3213440098 cites W3134727298 @default.
- W3213440098 cites W3135185854 @default.
- W3213440098 cites W3163860261 @default.
- W3213440098 cites W3168236164 @default.
- W3213440098 cites W3169322724 @default.
- W3213440098 cites W3176584175 @default.
- W3213440098 cites W3190297862 @default.
- W3213440098 cites W3197072457 @default.
- W3213440098 cites W4226299522 @default.
- W3213440098 cites W45843140 @default.
- W3213440098 cites W78979540 @default.
- W3213440098 doi "https://doi.org/10.1080/02564602.2021.1994044" @default.
- W3213440098 hasPublicationYear "2021" @default.
- W3213440098 type Work @default.
- W3213440098 sameAs 3213440098 @default.
- W3213440098 citedByCount "8" @default.
- W3213440098 countsByYear W32134400982022 @default.
- W3213440098 countsByYear W32134400982023 @default.
- W3213440098 crossrefType "journal-article" @default.
- W3213440098 hasAuthorship W3213440098A5009838892 @default.
- W3213440098 hasAuthorship W3213440098A5067213990 @default.
- W3213440098 hasConcept C108583219 @default.
- W3213440098 hasConcept C121608353 @default.
- W3213440098 hasConcept C126322002 @default.
- W3213440098 hasConcept C136886441 @default.
- W3213440098 hasConcept C142724271 @default.
- W3213440098 hasConcept C144024400 @default.
- W3213440098 hasConcept C148524875 @default.
- W3213440098 hasConcept C149635348 @default.
- W3213440098 hasConcept C153180895 @default.
- W3213440098 hasConcept C154945302 @default.
- W3213440098 hasConcept C19165224 @default.
- W3213440098 hasConcept C2779130545 @default.
- W3213440098 hasConcept C2780513914 @default.