Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213449503> ?p ?o ?g. }
- W3213449503 endingPage "14" @default.
- W3213449503 startingPage "1" @default.
- W3213449503 abstract "The development of medical imaging artificial intelligence (AI) systems for evaluating COVID-19 patients has demonstrated potential for improving clinical decision making and assessing patient outcomes during the recent COVID-19 pandemic. These have been applied to many medical imaging tasks, including disease diagnosis and patient prognosis, as well as augmented other clinical measurements to better inform treatment decisions. Because these systems are used in life-or-death decisions, clinical implementation relies on user trust in the AI output. This has caused many developers to utilize explainability techniques in an attempt to help a user understand when an AI algorithm is likely to succeed as well as which cases may be problematic for automatic assessment, thus increasing the potential for rapid clinical translation. AI application to COVID-19 has been marred with controversy recently. This review discusses several aspects of explainable and interpretable AI as it pertains to the evaluation of COVID-19 disease and it can restore trust in AI application to this disease. This includes the identification of common tasks that are relevant to explainable medical imaging AI, an overview of several modern approaches for producing explainable output as appropriate for a given imaging scenario, a discussion of how to evaluate explainable AI, and recommendations for best practices in explainable/interpretable AI implementation. This review will allow developers of AI systems for COVID-19 to quickly understand the basics of several explainable AI techniques and assist in the selection of an approach that is both appropriate and effective for a given scenario." @default.
- W3213449503 created "2021-11-22" @default.
- W3213449503 creator A5010071865 @default.
- W3213449503 creator A5029283101 @default.
- W3213449503 creator A5049042648 @default.
- W3213449503 creator A5050037650 @default.
- W3213449503 creator A5058410906 @default.
- W3213449503 creator A5071233739 @default.
- W3213449503 date "2021-12-07" @default.
- W3213449503 modified "2023-10-10" @default.
- W3213449503 title "A review of explainable and interpretable AI with applications in COVID‐19 imaging" @default.
- W3213449503 cites W1536680647 @default.
- W3213449503 cites W1849277567 @default.
- W3213449503 cites W1989883122 @default.
- W3213449503 cites W1999478155 @default.
- W3213449503 cites W2064997673 @default.
- W3213449503 cites W2065524237 @default.
- W3213449503 cites W2083102593 @default.
- W3213449503 cites W2088049833 @default.
- W3213449503 cites W2143461846 @default.
- W3213449503 cites W2177870565 @default.
- W3213449503 cites W2221443338 @default.
- W3213449503 cites W2282821441 @default.
- W3213449503 cites W2294798173 @default.
- W3213449503 cites W2295107390 @default.
- W3213449503 cites W2507931172 @default.
- W3213449503 cites W2621367454 @default.
- W3213449503 cites W2769497098 @default.
- W3213449503 cites W2773642388 @default.
- W3213449503 cites W2786204509 @default.
- W3213449503 cites W2794518994 @default.
- W3213449503 cites W2800202885 @default.
- W3213449503 cites W2809925683 @default.
- W3213449503 cites W2884585870 @default.
- W3213449503 cites W2888358068 @default.
- W3213449503 cites W2888518764 @default.
- W3213449503 cites W2891503716 @default.
- W3213449503 cites W2898197178 @default.
- W3213449503 cites W2902874468 @default.
- W3213449503 cites W2905189062 @default.
- W3213449503 cites W2906598409 @default.
- W3213449503 cites W2911410812 @default.
- W3213449503 cites W2911648713 @default.
- W3213449503 cites W2918598741 @default.
- W3213449503 cites W2934399013 @default.
- W3213449503 cites W2937307539 @default.
- W3213449503 cites W2945976633 @default.
- W3213449503 cites W2954017268 @default.
- W3213449503 cites W2958089299 @default.
- W3213449503 cites W2959687571 @default.
- W3213449503 cites W2962858109 @default.
- W3213449503 cites W2963037989 @default.
- W3213449503 cites W2963150697 @default.
- W3213449503 cites W2964642168 @default.
- W3213449503 cites W2968254841 @default.
- W3213449503 cites W2971013993 @default.
- W3213449503 cites W2975495759 @default.
- W3213449503 cites W2995523160 @default.
- W3213449503 cites W3010381061 @default.
- W3213449503 cites W3014795415 @default.
- W3213449503 cites W3017451406 @default.
- W3213449503 cites W3018603967 @default.
- W3213449503 cites W3020653337 @default.
- W3213449503 cites W3021214012 @default.
- W3213449503 cites W3022592783 @default.
- W3213449503 cites W3023402713 @default.
- W3213449503 cites W3025948831 @default.
- W3213449503 cites W3033742951 @default.
- W3213449503 cites W3035371891 @default.
- W3213449503 cites W3036319923 @default.
- W3213449503 cites W3042427901 @default.
- W3213449503 cites W3045975320 @default.
- W3213449503 cites W3091940685 @default.
- W3213449503 cites W3107538751 @default.
- W3213449503 cites W3120506007 @default.
- W3213449503 cites W3122153094 @default.
- W3213449503 cites W3124861950 @default.
- W3213449503 cites W3131591867 @default.
- W3213449503 cites W3132455321 @default.
- W3213449503 cites W3135243128 @default.
- W3213449503 cites W3202023533 @default.
- W3213449503 cites W3213449503 @default.
- W3213449503 cites W4206210655 @default.
- W3213449503 cites W639708223 @default.
- W3213449503 doi "https://doi.org/10.1002/mp.15359" @default.
- W3213449503 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34796530" @default.
- W3213449503 hasPublicationYear "2021" @default.
- W3213449503 type Work @default.
- W3213449503 sameAs 3213449503 @default.
- W3213449503 citedByCount "41" @default.
- W3213449503 countsByYear W32134495032021 @default.
- W3213449503 countsByYear W32134495032022 @default.
- W3213449503 countsByYear W32134495032023 @default.
- W3213449503 crossrefType "journal-article" @default.
- W3213449503 hasAuthorship W3213449503A5010071865 @default.
- W3213449503 hasAuthorship W3213449503A5029283101 @default.
- W3213449503 hasAuthorship W3213449503A5049042648 @default.
- W3213449503 hasAuthorship W3213449503A5050037650 @default.