Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213506774> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3213506774 endingPage "963" @default.
- W3213506774 startingPage "941" @default.
- W3213506774 abstract "Abstract Analysis of non-probability survey samples requires auxiliary information at the population level. Such information may also be obtained from an existing probability survey sample from the same finite population. Mass imputation has been used in practice for combining non-probability and probability survey samples and making inferences on the parameters of interest using the information collected only in the non-probability sample for the study variables. Under the assumption that the conditional mean function from the non-probability sample can be transported to the probability sample, we establish the consistency of the mass imputation estimator and derive its asymptotic variance formula. Variance estimators are developed using either linearization or bootstrap. Finite sample performances of the mass imputation estimator are investigated through simulation studies. We also address important practical issues of the method through the analysis of a real-world non-probability survey sample collected by the Pew Research Centre." @default.
- W3213506774 created "2021-11-22" @default.
- W3213506774 creator A5012515136 @default.
- W3213506774 creator A5045980590 @default.
- W3213506774 creator A5060865293 @default.
- W3213506774 creator A5070309029 @default.
- W3213506774 date "2021-07-01" @default.
- W3213506774 modified "2023-10-13" @default.
- W3213506774 title "Combining Non-Probability and Probability Survey Samples Through Mass Imputation" @default.
- W3213506774 cites W1961125352 @default.
- W3213506774 cites W2078117364 @default.
- W3213506774 cites W2092407310 @default.
- W3213506774 cites W2094031870 @default.
- W3213506774 cites W2100358124 @default.
- W3213506774 cites W2100420630 @default.
- W3213506774 cites W2116943185 @default.
- W3213506774 cites W2118502261 @default.
- W3213506774 cites W2129786731 @default.
- W3213506774 cites W2140006932 @default.
- W3213506774 cites W2145461824 @default.
- W3213506774 cites W2333217631 @default.
- W3213506774 cites W2343701444 @default.
- W3213506774 cites W2612145410 @default.
- W3213506774 cites W2934056287 @default.
- W3213506774 cites W2986739205 @default.
- W3213506774 cites W3003245714 @default.
- W3213506774 cites W3024272665 @default.
- W3213506774 cites W4243566810 @default.
- W3213506774 cites W4249743219 @default.
- W3213506774 doi "https://doi.org/10.1111/rssa.12696" @default.
- W3213506774 hasPublicationYear "2021" @default.
- W3213506774 type Work @default.
- W3213506774 sameAs 3213506774 @default.
- W3213506774 citedByCount "14" @default.
- W3213506774 countsByYear W32135067742021 @default.
- W3213506774 countsByYear W32135067742022 @default.
- W3213506774 countsByYear W32135067742023 @default.
- W3213506774 crossrefType "journal-article" @default.
- W3213506774 hasAuthorship W3213506774A5012515136 @default.
- W3213506774 hasAuthorship W3213506774A5045980590 @default.
- W3213506774 hasAuthorship W3213506774A5060865293 @default.
- W3213506774 hasAuthorship W3213506774A5070309029 @default.
- W3213506774 hasBestOaLocation W32135067741 @default.
- W3213506774 hasConcept C105795698 @default.
- W3213506774 hasConcept C144024400 @default.
- W3213506774 hasConcept C149441793 @default.
- W3213506774 hasConcept C149782125 @default.
- W3213506774 hasConcept C149923435 @default.
- W3213506774 hasConcept C185429906 @default.
- W3213506774 hasConcept C185592680 @default.
- W3213506774 hasConcept C197096303 @default.
- W3213506774 hasConcept C198531522 @default.
- W3213506774 hasConcept C2908647359 @default.
- W3213506774 hasConcept C2993010571 @default.
- W3213506774 hasConcept C33923547 @default.
- W3213506774 hasConcept C43617362 @default.
- W3213506774 hasConcept C5733905 @default.
- W3213506774 hasConcept C58041806 @default.
- W3213506774 hasConcept C9357733 @default.
- W3213506774 hasConceptScore W3213506774C105795698 @default.
- W3213506774 hasConceptScore W3213506774C144024400 @default.
- W3213506774 hasConceptScore W3213506774C149441793 @default.
- W3213506774 hasConceptScore W3213506774C149782125 @default.
- W3213506774 hasConceptScore W3213506774C149923435 @default.
- W3213506774 hasConceptScore W3213506774C185429906 @default.
- W3213506774 hasConceptScore W3213506774C185592680 @default.
- W3213506774 hasConceptScore W3213506774C197096303 @default.
- W3213506774 hasConceptScore W3213506774C198531522 @default.
- W3213506774 hasConceptScore W3213506774C2908647359 @default.
- W3213506774 hasConceptScore W3213506774C2993010571 @default.
- W3213506774 hasConceptScore W3213506774C33923547 @default.
- W3213506774 hasConceptScore W3213506774C43617362 @default.
- W3213506774 hasConceptScore W3213506774C5733905 @default.
- W3213506774 hasConceptScore W3213506774C58041806 @default.
- W3213506774 hasConceptScore W3213506774C9357733 @default.
- W3213506774 hasFunder F4320306076 @default.
- W3213506774 hasIssue "3" @default.
- W3213506774 hasLocation W32135067741 @default.
- W3213506774 hasLocation W32135067742 @default.
- W3213506774 hasLocation W32135067743 @default.
- W3213506774 hasLocation W32135067744 @default.
- W3213506774 hasOpenAccess W3213506774 @default.
- W3213506774 hasPrimaryLocation W32135067741 @default.
- W3213506774 hasRelatedWork W1534282248 @default.
- W3213506774 hasRelatedWork W1575718162 @default.
- W3213506774 hasRelatedWork W1827577724 @default.
- W3213506774 hasRelatedWork W1850854912 @default.
- W3213506774 hasRelatedWork W2115656200 @default.
- W3213506774 hasRelatedWork W2209032545 @default.
- W3213506774 hasRelatedWork W2789506085 @default.
- W3213506774 hasRelatedWork W2913857799 @default.
- W3213506774 hasRelatedWork W3122054616 @default.
- W3213506774 hasRelatedWork W4249885815 @default.
- W3213506774 hasVolume "184" @default.
- W3213506774 isParatext "false" @default.
- W3213506774 isRetracted "false" @default.
- W3213506774 magId "3213506774" @default.
- W3213506774 workType "article" @default.