Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213509745> ?p ?o ?g. }
- W3213509745 endingPage "2752" @default.
- W3213509745 startingPage "2752" @default.
- W3213509745 abstract "As an integral part of the electromagnetic system, antennas are becoming more advanced and versatile than ever before, thus making it necessary to adopt new techniques to enhance their performance. Machine Learning (ML), a branch of artificial intelligence, is a method of data analysis that automates analytical model building with minimal human intervention. The potential for ML to solve unpredictable and non-linear complex challenges is attracting researchers in the field of electromagnetics (EM), especially in antenna and antenna-based systems. Numerous antenna simulations, synthesis, and pattern recognition of radiations as well as non-linear inverse scattering-based object identifications are now leveraging ML techniques. Although the accuracy of ML algorithms depends on the availability of sufficient data and expert handling of the model and hyperparameters, it is gradually becoming the desired solution when researchers are aiming for a cost-effective solution without excessive time consumption. In this context, this paper aims to present an overview of machine learning, and its applications in Electromagnetics, including communication, radar, and sensing. It extensively discusses recent research progress in the development and use of intelligent algorithms for antenna design, synthesis and analysis, electromagnetic inverse scattering, synthetic aperture radar target recognition, and fault detection systems. It also provides limitations of this emerging field of study. The unique aspect of this work is that it surveys the state-of the art and recent advances in ML techniques as applied to EM." @default.
- W3213509745 created "2021-11-22" @default.
- W3213509745 creator A5003953212 @default.
- W3213509745 creator A5006912330 @default.
- W3213509745 creator A5011440927 @default.
- W3213509745 creator A5039855477 @default.
- W3213509745 creator A5057636949 @default.
- W3213509745 creator A5059078942 @default.
- W3213509745 creator A5085764531 @default.
- W3213509745 date "2021-11-11" @default.
- W3213509745 modified "2023-10-18" @default.
- W3213509745 title "Application of Machine Learning in Electromagnetics: Mini-Review" @default.
- W3213509745 cites W1047751539 @default.
- W3213509745 cites W1901129140 @default.
- W3213509745 cites W2020837188 @default.
- W3213509745 cites W2035312252 @default.
- W3213509745 cites W2035489376 @default.
- W3213509745 cites W2042385018 @default.
- W3213509745 cites W2051963657 @default.
- W3213509745 cites W2056092029 @default.
- W3213509745 cites W2062676390 @default.
- W3213509745 cites W2070493638 @default.
- W3213509745 cites W2080376981 @default.
- W3213509745 cites W2093229042 @default.
- W3213509745 cites W2093831731 @default.
- W3213509745 cites W2100040640 @default.
- W3213509745 cites W2100737159 @default.
- W3213509745 cites W2113481361 @default.
- W3213509745 cites W2120480077 @default.
- W3213509745 cites W2135059007 @default.
- W3213509745 cites W2142386228 @default.
- W3213509745 cites W2143368686 @default.
- W3213509745 cites W2161500405 @default.
- W3213509745 cites W2292481059 @default.
- W3213509745 cites W2345216791 @default.
- W3213509745 cites W2410591237 @default.
- W3213509745 cites W2562947506 @default.
- W3213509745 cites W2585885232 @default.
- W3213509745 cites W2737161878 @default.
- W3213509745 cites W2769250359 @default.
- W3213509745 cites W2773828237 @default.
- W3213509745 cites W2789503661 @default.
- W3213509745 cites W2795778498 @default.
- W3213509745 cites W2887902433 @default.
- W3213509745 cites W2890849789 @default.
- W3213509745 cites W2894120608 @default.
- W3213509745 cites W2896297964 @default.
- W3213509745 cites W2897303347 @default.
- W3213509745 cites W2901420195 @default.
- W3213509745 cites W2905668300 @default.
- W3213509745 cites W2908291798 @default.
- W3213509745 cites W2908824078 @default.
- W3213509745 cites W2911263297 @default.
- W3213509745 cites W2912249918 @default.
- W3213509745 cites W2918772560 @default.
- W3213509745 cites W2944721402 @default.
- W3213509745 cites W2949076167 @default.
- W3213509745 cites W2955306557 @default.
- W3213509745 cites W2962797416 @default.
- W3213509745 cites W2963390190 @default.
- W3213509745 cites W2964269625 @default.
- W3213509745 cites W2965089850 @default.
- W3213509745 cites W2965987398 @default.
- W3213509745 cites W2967035320 @default.
- W3213509745 cites W2971226097 @default.
- W3213509745 cites W2972915404 @default.
- W3213509745 cites W2976679379 @default.
- W3213509745 cites W2981245221 @default.
- W3213509745 cites W2982067861 @default.
- W3213509745 cites W2982640455 @default.
- W3213509745 cites W2987300119 @default.
- W3213509745 cites W2989233644 @default.
- W3213509745 cites W2993446934 @default.
- W3213509745 cites W2999183762 @default.
- W3213509745 cites W3000422124 @default.
- W3213509745 cites W3001177918 @default.
- W3213509745 cites W3001909141 @default.
- W3213509745 cites W3006424994 @default.
- W3213509745 cites W3006807401 @default.
- W3213509745 cites W3007153523 @default.
- W3213509745 cites W3010836603 @default.
- W3213509745 cites W3012072916 @default.
- W3213509745 cites W3013008552 @default.
- W3213509745 cites W3013723346 @default.
- W3213509745 cites W3014079666 @default.
- W3213509745 cites W3015567449 @default.
- W3213509745 cites W3016953135 @default.
- W3213509745 cites W3017343499 @default.
- W3213509745 cites W3018775879 @default.
- W3213509745 cites W3021365829 @default.
- W3213509745 cites W3021970402 @default.
- W3213509745 cites W3023324990 @default.
- W3213509745 cites W3025029468 @default.
- W3213509745 cites W3027217904 @default.
- W3213509745 cites W3033137211 @default.
- W3213509745 cites W3035359533 @default.
- W3213509745 cites W3035738565 @default.
- W3213509745 cites W3035932922 @default.