Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213541330> ?p ?o ?g. }
- W3213541330 endingPage "206" @default.
- W3213541330 startingPage "206" @default.
- W3213541330 abstract "In the present note, a new modification of the Adomian decomposition method is developed for the solution of fractional-order diffusion-wave equations with initial and boundary value Problems. The derivatives are described in the Caputo sense. The generalized formulation of the present technique is discussed to provide an easy way of understanding. In this context, some numerical examples of fractional-order diffusion-wave equations are solved by the suggested technique. It is investigated that the solution of fractional-order diffusion-wave equations can easily be handled by using the present technique. Moreover, a graphical representation was made for the solution of three illustrative examples. The solution-graphs are presented for integer and fractional order problems. It was found that the derived and exact results are in good agreement of integer-order problems. The convergence of fractional-order solution is the focus point of the present research work. The discussed technique is considered to be the best tool for the solution of fractional-order initial-boundary value problems in science and engineering." @default.
- W3213541330 created "2021-11-22" @default.
- W3213541330 creator A5009396276 @default.
- W3213541330 creator A5031686878 @default.
- W3213541330 creator A5044223719 @default.
- W3213541330 creator A5083354054 @default.
- W3213541330 creator A5084957265 @default.
- W3213541330 date "2021-11-11" @default.
- W3213541330 modified "2023-09-27" @default.
- W3213541330 title "A Novel Analytical Approach for the Solution of Fractional-Order Diffusion-Wave Equations" @default.
- W3213541330 cites W110340196 @default.
- W3213541330 cites W1127902823 @default.
- W3213541330 cites W1982294979 @default.
- W3213541330 cites W1984183985 @default.
- W3213541330 cites W1985028896 @default.
- W3213541330 cites W1988892282 @default.
- W3213541330 cites W1998214447 @default.
- W3213541330 cites W1998561306 @default.
- W3213541330 cites W1999951500 @default.
- W3213541330 cites W2000526322 @default.
- W3213541330 cites W2002006488 @default.
- W3213541330 cites W2005075959 @default.
- W3213541330 cites W2011093786 @default.
- W3213541330 cites W2020772937 @default.
- W3213541330 cites W2022692819 @default.
- W3213541330 cites W2024842502 @default.
- W3213541330 cites W2026206176 @default.
- W3213541330 cites W2035720653 @default.
- W3213541330 cites W2041540906 @default.
- W3213541330 cites W2048436983 @default.
- W3213541330 cites W2052728710 @default.
- W3213541330 cites W2067577527 @default.
- W3213541330 cites W2070454382 @default.
- W3213541330 cites W2082984932 @default.
- W3213541330 cites W2090303355 @default.
- W3213541330 cites W2092440717 @default.
- W3213541330 cites W2096839707 @default.
- W3213541330 cites W2104251590 @default.
- W3213541330 cites W2111271983 @default.
- W3213541330 cites W2114233135 @default.
- W3213541330 cites W2122600676 @default.
- W3213541330 cites W2131914906 @default.
- W3213541330 cites W2134837756 @default.
- W3213541330 cites W2136402279 @default.
- W3213541330 cites W2165076033 @default.
- W3213541330 cites W2230775999 @default.
- W3213541330 cites W2279965344 @default.
- W3213541330 cites W2318099151 @default.
- W3213541330 cites W2801824595 @default.
- W3213541330 cites W2914815956 @default.
- W3213541330 cites W2925165356 @default.
- W3213541330 cites W2942696942 @default.
- W3213541330 cites W2947551062 @default.
- W3213541330 cites W2972669114 @default.
- W3213541330 cites W3000633284 @default.
- W3213541330 cites W3003913739 @default.
- W3213541330 cites W3005521951 @default.
- W3213541330 cites W3095976679 @default.
- W3213541330 cites W4247861852 @default.
- W3213541330 cites W4250604186 @default.
- W3213541330 cites W1978355586 @default.
- W3213541330 doi "https://doi.org/10.3390/fractalfract5040206" @default.
- W3213541330 hasPublicationYear "2021" @default.
- W3213541330 type Work @default.
- W3213541330 sameAs 3213541330 @default.
- W3213541330 citedByCount "6" @default.
- W3213541330 countsByYear W32135413302022 @default.
- W3213541330 countsByYear W32135413302023 @default.
- W3213541330 crossrefType "journal-article" @default.
- W3213541330 hasAuthorship W3213541330A5009396276 @default.
- W3213541330 hasAuthorship W3213541330A5031686878 @default.
- W3213541330 hasAuthorship W3213541330A5044223719 @default.
- W3213541330 hasAuthorship W3213541330A5083354054 @default.
- W3213541330 hasAuthorship W3213541330A5084957265 @default.
- W3213541330 hasBestOaLocation W32135413301 @default.
- W3213541330 hasConcept C10138342 @default.
- W3213541330 hasConcept C120317633 @default.
- W3213541330 hasConcept C120665830 @default.
- W3213541330 hasConcept C121332964 @default.
- W3213541330 hasConcept C134306372 @default.
- W3213541330 hasConcept C151730666 @default.
- W3213541330 hasConcept C154249771 @default.
- W3213541330 hasConcept C162324750 @default.
- W3213541330 hasConcept C17744445 @default.
- W3213541330 hasConcept C182306322 @default.
- W3213541330 hasConcept C182310444 @default.
- W3213541330 hasConcept C192209626 @default.
- W3213541330 hasConcept C199360897 @default.
- W3213541330 hasConcept C199539241 @default.
- W3213541330 hasConcept C2776359362 @default.
- W3213541330 hasConcept C2777303404 @default.
- W3213541330 hasConcept C2779343474 @default.
- W3213541330 hasConcept C28826006 @default.
- W3213541330 hasConcept C33923547 @default.
- W3213541330 hasConcept C41008148 @default.
- W3213541330 hasConcept C50522688 @default.
- W3213541330 hasConcept C69357855 @default.
- W3213541330 hasConcept C78045399 @default.