Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213630550> ?p ?o ?g. }
- W3213630550 endingPage "100011" @default.
- W3213630550 startingPage "100011" @default.
- W3213630550 abstract "Maritime transport is the backbone of international trade and globalization. Maritime transport research can be roughly divided into two categories, namely the shipping side and the port side. Most of the classic approaches adopted to address practical problems in these research topics are based on long-term observations and expert knowledge, while few of them are based on historical data accumulated from practice. In recent years, emerging approaches, which we refer to as machine learning and deep learning techniques in this essay, have been receiving a wider attention to solve practical problems. As a relatively conservative industry, there are some initial trials of applying the emerging approaches to solve practical problems in the maritime sector. The objective of this essay is to review the application of emerging approaches to maritime transport research. The main research topics in maritime transport and classic methods developed to solve them are first presented. The introduction of emerging approaches and their suitability to be applied in maritime transport research is then discussed. Related existing studies are then reviewed according to problem settings, main data sources, and emerging approaches adopted. Challenges and solutions in the process are also discussed from the perspectives of data, model, users, and targets. Finally, promising future research directions are identified. This essay is the first to give a comprehensive review of existing studies on developing machine learning and deep learning models together with popular data sources used to address practical problems in maritime transport." @default.
- W3213630550 created "2021-11-22" @default.
- W3213630550 creator A5024001075 @default.
- W3213630550 creator A5059572294 @default.
- W3213630550 creator A5070050188 @default.
- W3213630550 creator A5076313841 @default.
- W3213630550 date "2021-12-01" @default.
- W3213630550 modified "2023-10-16" @default.
- W3213630550 title "Emerging approaches applied to maritime transport research: Past and future" @default.
- W3213630550 cites W1981271277 @default.
- W3213630550 cites W1986140147 @default.
- W3213630550 cites W2000322714 @default.
- W3213630550 cites W2023860626 @default.
- W3213630550 cites W2025821359 @default.
- W3213630550 cites W2033494514 @default.
- W3213630550 cites W2038780669 @default.
- W3213630550 cites W2053223966 @default.
- W3213630550 cites W2073122481 @default.
- W3213630550 cites W2083442964 @default.
- W3213630550 cites W2091233543 @default.
- W3213630550 cites W2127841934 @default.
- W3213630550 cites W2161375627 @default.
- W3213630550 cites W2322912969 @default.
- W3213630550 cites W2521878396 @default.
- W3213630550 cites W2522798398 @default.
- W3213630550 cites W2536791669 @default.
- W3213630550 cites W2564405047 @default.
- W3213630550 cites W2584924584 @default.
- W3213630550 cites W2645483609 @default.
- W3213630550 cites W2734449662 @default.
- W3213630550 cites W2753820606 @default.
- W3213630550 cites W2766830746 @default.
- W3213630550 cites W2793918899 @default.
- W3213630550 cites W2794657807 @default.
- W3213630550 cites W2811028061 @default.
- W3213630550 cites W2884323833 @default.
- W3213630550 cites W2887485864 @default.
- W3213630550 cites W2910427893 @default.
- W3213630550 cites W2915513980 @default.
- W3213630550 cites W2934059532 @default.
- W3213630550 cites W2952062072 @default.
- W3213630550 cites W2959304058 @default.
- W3213630550 cites W2964482263 @default.
- W3213630550 cites W2964610176 @default.
- W3213630550 cites W2968389258 @default.
- W3213630550 cites W2970948886 @default.
- W3213630550 cites W2976348340 @default.
- W3213630550 cites W2989319865 @default.
- W3213630550 cites W2993554159 @default.
- W3213630550 cites W3003906255 @default.
- W3213630550 cites W3006838544 @default.
- W3213630550 cites W3011028503 @default.
- W3213630550 cites W3016362007 @default.
- W3213630550 cites W3016830854 @default.
- W3213630550 cites W3019708113 @default.
- W3213630550 cites W3021018522 @default.
- W3213630550 cites W3022105707 @default.
- W3213630550 cites W3026482450 @default.
- W3213630550 cites W3026900034 @default.
- W3213630550 cites W3035709542 @default.
- W3213630550 cites W3045346503 @default.
- W3213630550 cites W3047350571 @default.
- W3213630550 cites W3048280677 @default.
- W3213630550 cites W3084233918 @default.
- W3213630550 cites W3094215927 @default.
- W3213630550 cites W3094450891 @default.
- W3213630550 cites W3106775317 @default.
- W3213630550 cites W3107179788 @default.
- W3213630550 cites W3109135390 @default.
- W3213630550 cites W3111946466 @default.
- W3213630550 cites W3119184615 @default.
- W3213630550 cites W3119676426 @default.
- W3213630550 cites W3127267938 @default.
- W3213630550 cites W3129623574 @default.
- W3213630550 cites W3148398330 @default.
- W3213630550 cites W3153516896 @default.
- W3213630550 cites W3162666924 @default.
- W3213630550 cites W3163630616 @default.
- W3213630550 cites W3165196004 @default.
- W3213630550 cites W3166194567 @default.
- W3213630550 cites W3166934986 @default.
- W3213630550 cites W3183180464 @default.
- W3213630550 cites W3183383536 @default.
- W3213630550 cites W3184032288 @default.
- W3213630550 cites W3188798041 @default.
- W3213630550 cites W3194880107 @default.
- W3213630550 cites W3197852213 @default.
- W3213630550 cites W3203058705 @default.
- W3213630550 cites W4211101039 @default.
- W3213630550 cites W85311189 @default.
- W3213630550 doi "https://doi.org/10.1016/j.commtr.2021.100011" @default.
- W3213630550 hasPublicationYear "2021" @default.
- W3213630550 type Work @default.
- W3213630550 sameAs 3213630550 @default.
- W3213630550 citedByCount "41" @default.
- W3213630550 countsByYear W32136305502022 @default.
- W3213630550 countsByYear W32136305502023 @default.
- W3213630550 crossrefType "journal-article" @default.