Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213649580> ?p ?o ?g. }
- W3213649580 endingPage "125" @default.
- W3213649580 startingPage "111" @default.
- W3213649580 abstract "Knowing the error distribution is important in many multivariate time series applications. To alleviate the risk of error distribution mis-specification, testing methodologies are needed to detect whether the chosen error distribution is correct. However, the majority of existing tests only deal with the multivariate normal distribution for some special multivariate time series models, and thus cannot be used for testing the often observed heavy-tailed and skewed error distributions in applications. In this article, we construct a new consistent test for general multivariate time series models, based on the kernelized Stein discrepancy. To account for the estimation uncertainty and unobserved initial values, a bootstrap method is provided to calculate the critical values. Our new test is easy-to-implement for a large scope of multivariate error distributions, and its importance is illustrated by simulated and real data. As an extension, we also show how to test for the error distribution in copula time series models." @default.
- W3213649580 created "2021-11-22" @default.
- W3213649580 creator A5000737468 @default.
- W3213649580 creator A5021516499 @default.
- W3213649580 creator A5066201940 @default.
- W3213649580 creator A5067053688 @default.
- W3213649580 date "2021-12-21" @default.
- W3213649580 modified "2023-10-17" @default.
- W3213649580 title "Testing Error Distribution by Kernelized Stein Discrepancy in Multivariate Time Series Models" @default.
- W3213649580 cites W1827554748 @default.
- W3213649580 cites W1970957555 @default.
- W3213649580 cites W1977970167 @default.
- W3213649580 cites W1989670262 @default.
- W3213649580 cites W1994884074 @default.
- W3213649580 cites W1999053581 @default.
- W3213649580 cites W2007926406 @default.
- W3213649580 cites W2012705547 @default.
- W3213649580 cites W2015024767 @default.
- W3213649580 cites W2032272815 @default.
- W3213649580 cites W2037329921 @default.
- W3213649580 cites W2039003808 @default.
- W3213649580 cites W2042645953 @default.
- W3213649580 cites W2049234590 @default.
- W3213649580 cites W2053635704 @default.
- W3213649580 cites W2071978833 @default.
- W3213649580 cites W2078262781 @default.
- W3213649580 cites W2091929145 @default.
- W3213649580 cites W2110142887 @default.
- W3213649580 cites W2118643627 @default.
- W3213649580 cites W2123684617 @default.
- W3213649580 cites W2125714858 @default.
- W3213649580 cites W2135643467 @default.
- W3213649580 cites W2137018331 @default.
- W3213649580 cites W2143053136 @default.
- W3213649580 cites W2143129852 @default.
- W3213649580 cites W2145438983 @default.
- W3213649580 cites W2147475936 @default.
- W3213649580 cites W2156661350 @default.
- W3213649580 cites W2162305032 @default.
- W3213649580 cites W2500605637 @default.
- W3213649580 cites W2533585107 @default.
- W3213649580 cites W2577686957 @default.
- W3213649580 cites W2947626232 @default.
- W3213649580 cites W2964215881 @default.
- W3213649580 cites W2975618655 @default.
- W3213649580 cites W3021855913 @default.
- W3213649580 cites W3121736584 @default.
- W3213649580 cites W3123512584 @default.
- W3213649580 cites W3124216392 @default.
- W3213649580 cites W3125564657 @default.
- W3213649580 doi "https://doi.org/10.1080/07350015.2021.2002160" @default.
- W3213649580 hasPublicationYear "2021" @default.
- W3213649580 type Work @default.
- W3213649580 sameAs 3213649580 @default.
- W3213649580 citedByCount "1" @default.
- W3213649580 countsByYear W32136495802023 @default.
- W3213649580 crossrefType "journal-article" @default.
- W3213649580 hasAuthorship W3213649580A5000737468 @default.
- W3213649580 hasAuthorship W3213649580A5021516499 @default.
- W3213649580 hasAuthorship W3213649580A5066201940 @default.
- W3213649580 hasAuthorship W3213649580A5067053688 @default.
- W3213649580 hasBestOaLocation W32136495802 @default.
- W3213649580 hasConcept C105795698 @default.
- W3213649580 hasConcept C143724316 @default.
- W3213649580 hasConcept C149782125 @default.
- W3213649580 hasConcept C151730666 @default.
- W3213649580 hasConcept C161584116 @default.
- W3213649580 hasConcept C172713675 @default.
- W3213649580 hasConcept C17618745 @default.
- W3213649580 hasConcept C177384507 @default.
- W3213649580 hasConcept C33923547 @default.
- W3213649580 hasConcept C41008148 @default.
- W3213649580 hasConcept C58501165 @default.
- W3213649580 hasConcept C73791607 @default.
- W3213649580 hasConcept C79708077 @default.
- W3213649580 hasConcept C86803240 @default.
- W3213649580 hasConceptScore W3213649580C105795698 @default.
- W3213649580 hasConceptScore W3213649580C143724316 @default.
- W3213649580 hasConceptScore W3213649580C149782125 @default.
- W3213649580 hasConceptScore W3213649580C151730666 @default.
- W3213649580 hasConceptScore W3213649580C161584116 @default.
- W3213649580 hasConceptScore W3213649580C172713675 @default.
- W3213649580 hasConceptScore W3213649580C17618745 @default.
- W3213649580 hasConceptScore W3213649580C177384507 @default.
- W3213649580 hasConceptScore W3213649580C33923547 @default.
- W3213649580 hasConceptScore W3213649580C41008148 @default.
- W3213649580 hasConceptScore W3213649580C58501165 @default.
- W3213649580 hasConceptScore W3213649580C73791607 @default.
- W3213649580 hasConceptScore W3213649580C79708077 @default.
- W3213649580 hasConceptScore W3213649580C86803240 @default.
- W3213649580 hasFunder F4320306709 @default.
- W3213649580 hasFunder F4320321001 @default.
- W3213649580 hasIssue "1" @default.
- W3213649580 hasLocation W32136495801 @default.
- W3213649580 hasLocation W32136495802 @default.
- W3213649580 hasLocation W32136495803 @default.
- W3213649580 hasOpenAccess W3213649580 @default.
- W3213649580 hasPrimaryLocation W32136495801 @default.