Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213694590> ?p ?o ?g. }
- W3213694590 endingPage "23" @default.
- W3213694590 startingPage "1" @default.
- W3213694590 abstract "The aim of this article is to promote the development of rural finance and the further informatization of rural banks. Based on DL (deep learning) and artificial intelligence technology, data pre-processing and feature selection are conducted on the customer information of rural banks in a certain region, including the historical deposit and loan, transaction record, and credit information. Besides, four DL models are proposed with a precision of more than 87% by test to improve the simulation effect and explore the application of DL. The BLSTM-CNN (Bi-directional Long Short-Term Memory-Convolutional Neural Network) model with a precision of 95.8%, which integrates RNN (Recurrent Neural Network) and CNN (Convolutional Neural Network) in parallel, solves the shortcomings of RNN and CNN separately. The research result can provide a more reasonable prediction model for rural banks, and ideas for the development of rural informatization and promoting rural governance." @default.
- W3213694590 created "2021-11-22" @default.
- W3213694590 creator A5041096560 @default.
- W3213694590 creator A5042863638 @default.
- W3213694590 creator A5049718399 @default.
- W3213694590 creator A5087687314 @default.
- W3213694590 date "2021-10-08" @default.
- W3213694590 modified "2023-10-18" @default.
- W3213694590 title "Application of Artificial Intelligence Technology Optimized by Deep Learning to Rural Financial Development and Rural Governance" @default.
- W3213694590 cites W2596623478 @default.
- W3213694590 cites W2608554340 @default.
- W3213694590 cites W2617137613 @default.
- W3213694590 cites W2734699047 @default.
- W3213694590 cites W2744526485 @default.
- W3213694590 cites W2747261161 @default.
- W3213694590 cites W2768861243 @default.
- W3213694590 cites W2769581371 @default.
- W3213694590 cites W2781664425 @default.
- W3213694590 cites W2782968911 @default.
- W3213694590 cites W2790979755 @default.
- W3213694590 cites W2885195348 @default.
- W3213694590 cites W2890793284 @default.
- W3213694590 cites W2901218091 @default.
- W3213694590 cites W2901434343 @default.
- W3213694590 cites W2905810301 @default.
- W3213694590 cites W2909675670 @default.
- W3213694590 cites W2911891326 @default.
- W3213694590 cites W2941944264 @default.
- W3213694590 cites W2948490758 @default.
- W3213694590 cites W2955325445 @default.
- W3213694590 cites W2964347220 @default.
- W3213694590 cites W2976253411 @default.
- W3213694590 cites W2992337147 @default.
- W3213694590 cites W3005817384 @default.
- W3213694590 cites W3016208458 @default.
- W3213694590 cites W3033009913 @default.
- W3213694590 cites W3040726928 @default.
- W3213694590 cites W3041263009 @default.
- W3213694590 cites W3049310425 @default.
- W3213694590 cites W3121769996 @default.
- W3213694590 cites W3125556512 @default.
- W3213694590 cites W3129149649 @default.
- W3213694590 cites W3158269896 @default.
- W3213694590 cites W3162426603 @default.
- W3213694590 cites W3169143301 @default.
- W3213694590 cites W3186812494 @default.
- W3213694590 cites W4229609299 @default.
- W3213694590 doi "https://doi.org/10.4018/jgim.289220" @default.
- W3213694590 hasPublicationYear "2021" @default.
- W3213694590 type Work @default.
- W3213694590 sameAs 3213694590 @default.
- W3213694590 citedByCount "10" @default.
- W3213694590 countsByYear W32136945902022 @default.
- W3213694590 countsByYear W32136945902023 @default.
- W3213694590 crossrefType "journal-article" @default.
- W3213694590 hasAuthorship W3213694590A5041096560 @default.
- W3213694590 hasAuthorship W3213694590A5042863638 @default.
- W3213694590 hasAuthorship W3213694590A5049718399 @default.
- W3213694590 hasAuthorship W3213694590A5087687314 @default.
- W3213694590 hasBestOaLocation W32136945901 @default.
- W3213694590 hasConcept C10138342 @default.
- W3213694590 hasConcept C108583219 @default.
- W3213694590 hasConcept C119857082 @default.
- W3213694590 hasConcept C144133560 @default.
- W3213694590 hasConcept C147168706 @default.
- W3213694590 hasConcept C148483581 @default.
- W3213694590 hasConcept C154945302 @default.
- W3213694590 hasConcept C2776352007 @default.
- W3213694590 hasConcept C2777764128 @default.
- W3213694590 hasConcept C39389867 @default.
- W3213694590 hasConcept C41008148 @default.
- W3213694590 hasConcept C50644808 @default.
- W3213694590 hasConcept C75949130 @default.
- W3213694590 hasConcept C76155785 @default.
- W3213694590 hasConcept C77088390 @default.
- W3213694590 hasConcept C81363708 @default.
- W3213694590 hasConceptScore W3213694590C10138342 @default.
- W3213694590 hasConceptScore W3213694590C108583219 @default.
- W3213694590 hasConceptScore W3213694590C119857082 @default.
- W3213694590 hasConceptScore W3213694590C144133560 @default.
- W3213694590 hasConceptScore W3213694590C147168706 @default.
- W3213694590 hasConceptScore W3213694590C148483581 @default.
- W3213694590 hasConceptScore W3213694590C154945302 @default.
- W3213694590 hasConceptScore W3213694590C2776352007 @default.
- W3213694590 hasConceptScore W3213694590C2777764128 @default.
- W3213694590 hasConceptScore W3213694590C39389867 @default.
- W3213694590 hasConceptScore W3213694590C41008148 @default.
- W3213694590 hasConceptScore W3213694590C50644808 @default.
- W3213694590 hasConceptScore W3213694590C75949130 @default.
- W3213694590 hasConceptScore W3213694590C76155785 @default.
- W3213694590 hasConceptScore W3213694590C77088390 @default.
- W3213694590 hasConceptScore W3213694590C81363708 @default.
- W3213694590 hasIssue "7" @default.
- W3213694590 hasLocation W32136945901 @default.
- W3213694590 hasOpenAccess W3213694590 @default.
- W3213694590 hasPrimaryLocation W32136945901 @default.
- W3213694590 hasRelatedWork W2731899572 @default.
- W3213694590 hasRelatedWork W2999805992 @default.