Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213718543> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3213718543 abstract "Nitrate concentration is an important indicator for the marine ecosystem. Compared with laboratory chemical methods such as Cadmium-Reduction method, in-situ nitrate optical sensor is much faster and reagent-free in a long time and continuous monitoring. Partial Least Squares (PLS) method is often used in ultraviolet absorption spectrum modeling, which is difficult to optimize and has low generalization ability. The neural network can compel any no-linear function by any precision, which has high generalization ability in the modeling. A neural network model is established in the in-situ nitrate sensor to measure the nitrate concentration in seawater in which the nitrate concentration range is 30 similar to 750 mu g . L-1. Double-hidden layer neural network model is determined to adopt by contrasting performance of single-hidden layer and double-hidden layer to measure nitrate concentration, the input layer is absorption spectrum from 200 to 275 nm, the output layer is nitrate concentration, and sigmoid function is used as the activation function. Gradient descent method is used to update weighting parameters for the neural network of each layer, after 55 000 times iteration, network training is conducted based on the learning rate of 0. 26. After validation for the blind test of the model through 8-group randomized validation data, the nitrate concentration using double-hidden layer neural network model is higher in linear correlation to its actual concentration (R-2 = 0. 997) in which the Root Mean Squared Error is 10. 864, average absolute error is 8. 442 mu g . L-1, average the relative error is 2. 8%. Compared with single-hidden layer neural network model, the double-hidden layer neural network model has higher accuracy in which the average relative error is reduced by 4. 92% , the Root Mean Squared Error of PLS is 4. 58% using the same spectral data, while the mean relative error is 11. 470. The result shows that the neural network model is much better than the Partial Least Squares model under certain conditions. It verifies the superiority of the neural network model applied to the nitrate concentration measurement by ultraviolet absorption spectrometry. The application test was carried out on the Environmental Monitoring 01 monitoring vessel of the Ministry of Natural Resources, the measurement results are basically identical with the laboratory method in 11 stations, which is further proved from the reliability and practicality." @default.
- W3213718543 created "2021-11-22" @default.
- W3213718543 creator A5006375134 @default.
- W3213718543 creator A5016803642 @default.
- W3213718543 creator A5031459790 @default.
- W3213718543 creator A5049565864 @default.
- W3213718543 creator A5067522750 @default.
- W3213718543 date "2020-10-01" @default.
- W3213718543 modified "2023-09-23" @default.
- W3213718543 title "Nitrate Measurement in the Ocean Based on Neural Network Model" @default.
- W3213718543 doi "https://doi.org/10.3964/j.issn.1000-0593(2020)10-3211-06" @default.
- W3213718543 hasPublicationYear "2020" @default.
- W3213718543 type Work @default.
- W3213718543 sameAs 3213718543 @default.
- W3213718543 citedByCount "0" @default.
- W3213718543 crossrefType "journal-article" @default.
- W3213718543 hasAuthorship W3213718543A5006375134 @default.
- W3213718543 hasAuthorship W3213718543A5016803642 @default.
- W3213718543 hasAuthorship W3213718543A5031459790 @default.
- W3213718543 hasAuthorship W3213718543A5049565864 @default.
- W3213718543 hasAuthorship W3213718543A5067522750 @default.
- W3213718543 hasConcept C121332964 @default.
- W3213718543 hasConcept C154945302 @default.
- W3213718543 hasConcept C178790620 @default.
- W3213718543 hasConcept C183115368 @default.
- W3213718543 hasConcept C185592680 @default.
- W3213718543 hasConcept C186060115 @default.
- W3213718543 hasConcept C24890656 @default.
- W3213718543 hasConcept C2776384668 @default.
- W3213718543 hasConcept C33923547 @default.
- W3213718543 hasConcept C41008148 @default.
- W3213718543 hasConcept C50644808 @default.
- W3213718543 hasConcept C81388566 @default.
- W3213718543 hasConcept C86803240 @default.
- W3213718543 hasConceptScore W3213718543C121332964 @default.
- W3213718543 hasConceptScore W3213718543C154945302 @default.
- W3213718543 hasConceptScore W3213718543C178790620 @default.
- W3213718543 hasConceptScore W3213718543C183115368 @default.
- W3213718543 hasConceptScore W3213718543C185592680 @default.
- W3213718543 hasConceptScore W3213718543C186060115 @default.
- W3213718543 hasConceptScore W3213718543C24890656 @default.
- W3213718543 hasConceptScore W3213718543C2776384668 @default.
- W3213718543 hasConceptScore W3213718543C33923547 @default.
- W3213718543 hasConceptScore W3213718543C41008148 @default.
- W3213718543 hasConceptScore W3213718543C50644808 @default.
- W3213718543 hasConceptScore W3213718543C81388566 @default.
- W3213718543 hasConceptScore W3213718543C86803240 @default.
- W3213718543 hasIssue "10" @default.
- W3213718543 hasLocation W32137185431 @default.
- W3213718543 hasOpenAccess W3213718543 @default.
- W3213718543 hasPrimaryLocation W32137185431 @default.
- W3213718543 hasRelatedWork W1968701176 @default.
- W3213718543 hasRelatedWork W1999392207 @default.
- W3213718543 hasRelatedWork W2072848064 @default.
- W3213718543 hasRelatedWork W2104365619 @default.
- W3213718543 hasRelatedWork W2131303668 @default.
- W3213718543 hasRelatedWork W2279159455 @default.
- W3213718543 hasRelatedWork W2287544075 @default.
- W3213718543 hasRelatedWork W2350630470 @default.
- W3213718543 hasRelatedWork W2351912093 @default.
- W3213718543 hasRelatedWork W2359647726 @default.
- W3213718543 hasRelatedWork W2360880262 @default.
- W3213718543 hasRelatedWork W2388285320 @default.
- W3213718543 hasRelatedWork W2392483176 @default.
- W3213718543 hasRelatedWork W2518002543 @default.
- W3213718543 hasRelatedWork W2548156523 @default.
- W3213718543 hasRelatedWork W2589687845 @default.
- W3213718543 hasRelatedWork W2904305576 @default.
- W3213718543 hasRelatedWork W2920316094 @default.
- W3213718543 hasRelatedWork W781070654 @default.
- W3213718543 hasRelatedWork W2185397496 @default.
- W3213718543 hasVolume "40" @default.
- W3213718543 isParatext "false" @default.
- W3213718543 isRetracted "false" @default.
- W3213718543 magId "3213718543" @default.
- W3213718543 workType "article" @default.