Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213728098> ?p ?o ?g. }
- W3213728098 endingPage "489" @default.
- W3213728098 startingPage "489" @default.
- W3213728098 abstract "In precision agriculture, the nitrogen level is significantly important for establishing phenotype, quality and yield of crops. It cannot be achieved in the future without appropriate nitrogen fertilizer application. Moreover, a convenient and real-time advance technology for nitrogen nutrition diagnosis of crops is a prerequisite for an efficient and reasonable nitrogen-fertilizer management system. With the development of research on plant phenotype and artificial intelligence technology in agriculture, deep learning has demonstrated a great potential in agriculture for recognizing nondestructive nitrogen nutrition diagnosis in plants by automation and high throughput at a low cost. To build a nitrogen nutrient-diagnosis model, muskmelons were cultivated under different nitrogen levels in a greenhouse. The digital images of canopy leaves and the environmental factors (light and temperature) during the growth period of muskmelons were tracked and analyzed. The nitrogen concentrations of the plants were measured, we successfully constructed and trained machine-learning- and deep-learning models based on the traditional backpropagation neural network (BPNN), the emerging convolution neural network (CNN), the deep convolution neural network (DCNN) and the long short-term memory (LSTM) for the nitrogen nutrition diagnosis of muskmelon. The adjusted determination coefficient (R2) and mean square error (MSE) between the predicted values and measured values of nitrogen concentration were adopted to evaluate the models’ accuracy. The values were R2 = 0.567 and MSE = 0.429 for BPNN model; R2 = 0.376 and MSE = 0.628 for CNN model; R2 = 0.686 and MSE = 0.355 for deep convolution neural network (DCNN) model; and R2 = 0.904 and MSE = 0.123 for the hybrid model DCNN–LSTM. Therefore, DCNN–LSTM shows the highest accuracy in predicting the nitrogen content of muskmelon. Our findings highlight a base for achieving a convenient, precise and intelligent diagnosis of nitrogen nutrition in muskmelon." @default.
- W3213728098 created "2021-11-22" @default.
- W3213728098 creator A5024010764 @default.
- W3213728098 creator A5026217652 @default.
- W3213728098 creator A5040538158 @default.
- W3213728098 creator A5050274262 @default.
- W3213728098 creator A5076996282 @default.
- W3213728098 creator A5081992146 @default.
- W3213728098 date "2021-11-12" @default.
- W3213728098 modified "2023-10-13" @default.
- W3213728098 title "Using a Hybrid Neural Network Model DCNN–LSTM for Image-Based Nitrogen Nutrition Diagnosis in Muskmelon" @default.
- W3213728098 cites W1498436455 @default.
- W3213728098 cites W1967902993 @default.
- W3213728098 cites W1977116159 @default.
- W3213728098 cites W1978127050 @default.
- W3213728098 cites W1980640717 @default.
- W3213728098 cites W1989712641 @default.
- W3213728098 cites W1993760488 @default.
- W3213728098 cites W1998660187 @default.
- W3213728098 cites W1998737138 @default.
- W3213728098 cites W2007356270 @default.
- W3213728098 cites W2012479503 @default.
- W3213728098 cites W2016485330 @default.
- W3213728098 cites W2041205904 @default.
- W3213728098 cites W2052993329 @default.
- W3213728098 cites W2062567499 @default.
- W3213728098 cites W2076063813 @default.
- W3213728098 cites W2108806738 @default.
- W3213728098 cites W2115796666 @default.
- W3213728098 cites W2149352713 @default.
- W3213728098 cites W2157933475 @default.
- W3213728098 cites W2227525679 @default.
- W3213728098 cites W2470803522 @default.
- W3213728098 cites W2520364485 @default.
- W3213728098 cites W2611227133 @default.
- W3213728098 cites W2611517298 @default.
- W3213728098 cites W2625198283 @default.
- W3213728098 cites W2744684719 @default.
- W3213728098 cites W2752728932 @default.
- W3213728098 cites W2779516725 @default.
- W3213728098 cites W2807936075 @default.
- W3213728098 cites W2886554959 @default.
- W3213728098 cites W2886555888 @default.
- W3213728098 cites W2889339523 @default.
- W3213728098 cites W2891667148 @default.
- W3213728098 cites W2897933472 @default.
- W3213728098 cites W2899128648 @default.
- W3213728098 cites W2911287026 @default.
- W3213728098 cites W2912398505 @default.
- W3213728098 cites W2917557027 @default.
- W3213728098 cites W2919115771 @default.
- W3213728098 cites W2937772171 @default.
- W3213728098 cites W2947361958 @default.
- W3213728098 cites W2950477222 @default.
- W3213728098 cites W2952651429 @default.
- W3213728098 cites W2954403870 @default.
- W3213728098 cites W2969524052 @default.
- W3213728098 cites W2970904171 @default.
- W3213728098 cites W2979666105 @default.
- W3213728098 cites W3010842465 @default.
- W3213728098 cites W3015388715 @default.
- W3213728098 cites W3015562698 @default.
- W3213728098 cites W3024179220 @default.
- W3213728098 cites W3103444592 @default.
- W3213728098 cites W3110015110 @default.
- W3213728098 cites W3110616739 @default.
- W3213728098 cites W3116177341 @default.
- W3213728098 cites W3129768331 @default.
- W3213728098 cites W3165788119 @default.
- W3213728098 cites W3182380878 @default.
- W3213728098 cites W4236993525 @default.
- W3213728098 cites W889042666 @default.
- W3213728098 doi "https://doi.org/10.3390/horticulturae7110489" @default.
- W3213728098 hasPublicationYear "2021" @default.
- W3213728098 type Work @default.
- W3213728098 sameAs 3213728098 @default.
- W3213728098 citedByCount "5" @default.
- W3213728098 countsByYear W32137280982023 @default.
- W3213728098 crossrefType "journal-article" @default.
- W3213728098 hasAuthorship W3213728098A5024010764 @default.
- W3213728098 hasAuthorship W3213728098A5026217652 @default.
- W3213728098 hasAuthorship W3213728098A5040538158 @default.
- W3213728098 hasAuthorship W3213728098A5050274262 @default.
- W3213728098 hasAuthorship W3213728098A5076996282 @default.
- W3213728098 hasAuthorship W3213728098A5081992146 @default.
- W3213728098 hasBestOaLocation W32137280981 @default.
- W3213728098 hasConcept C101000010 @default.
- W3213728098 hasConcept C105795698 @default.
- W3213728098 hasConcept C108583219 @default.
- W3213728098 hasConcept C118518473 @default.
- W3213728098 hasConcept C119857082 @default.
- W3213728098 hasConcept C120217122 @default.
- W3213728098 hasConcept C127413603 @default.
- W3213728098 hasConcept C139945424 @default.
- W3213728098 hasConcept C154945302 @default.
- W3213728098 hasConcept C155032097 @default.
- W3213728098 hasConcept C178790620 @default.
- W3213728098 hasConcept C185592680 @default.