Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213743969> ?p ?o ?g. }
- W3213743969 endingPage "100190" @default.
- W3213743969 startingPage "100190" @default.
- W3213743969 abstract "Two-vehicle crashes have been dominating all types of traffic accidents, wherein the vehicle drivers have been sustaining the highest risk of injury among all vehicle occupants. To understand the critical factors to the drivers’ injury severity of two-vehicle crashes, we employed the random parameters multinomial logit model as a data analyzing tool. To capture the unobserved heterogeneity and potential temporal instability, we combined two strategies: Bayesian random parameter logit and explicitly correlated outcomes. The random parameter logit models were validated with a nine-year large-scale dataset compiled by combining the Crash Report Sampling System (CRSS) and General Estimates Sampling (GES) databases. The results underscore the importance of explicit modeling of inter-outcome correlation, which captured the potential transition probability between adjacent levels of injury severity and improved the model’s predictability. Our model also highlighted substantial per-case and per-driver heterogeneity, which respectively explained 22.8% and 29.4% of the total variance (minor injury) and 25.4% and 24.9% of the variance (severe injury). We found that the female drivers, old (⩾65 years) drivers, unbuckled drivers, speeding drivers sustained a higher injury risk in their corresponding groups. Drivers in lighter and older vehicles suffer higher injury risks. Several other factors also considerably affect the injury severity outcomes, such as the road’s speed limit and variables that are proxies of traffic volume (intersection type, whether at the peak hours). Regarding Bayesian modeling, we observed that using weakly informative prior distribution has little effect on the parameter estimates. We also pointed to the directions to further improve the proposed modeling framework." @default.
- W3213743969 created "2021-11-22" @default.
- W3213743969 creator A5009741300 @default.
- W3213743969 creator A5033643574 @default.
- W3213743969 creator A5040805352 @default.
- W3213743969 creator A5041925956 @default.
- W3213743969 creator A5050221970 @default.
- W3213743969 creator A5060641798 @default.
- W3213743969 creator A5078336620 @default.
- W3213743969 date "2022-03-01" @default.
- W3213743969 modified "2023-10-16" @default.
- W3213743969 title "Two-vehicle driver-injury severity: A multivariate random parameters logit approach" @default.
- W3213743969 cites W1536497620 @default.
- W3213743969 cites W1586049719 @default.
- W3213743969 cites W1752175424 @default.
- W3213743969 cites W1877880381 @default.
- W3213743969 cites W1932308016 @default.
- W3213743969 cites W1966886420 @default.
- W3213743969 cites W1969020701 @default.
- W3213743969 cites W1976111068 @default.
- W3213743969 cites W1976903264 @default.
- W3213743969 cites W1977533716 @default.
- W3213743969 cites W1977619318 @default.
- W3213743969 cites W1980399291 @default.
- W3213743969 cites W1980746151 @default.
- W3213743969 cites W1980922684 @default.
- W3213743969 cites W2001575456 @default.
- W3213743969 cites W2008909284 @default.
- W3213743969 cites W2016219233 @default.
- W3213743969 cites W2020708932 @default.
- W3213743969 cites W2020999234 @default.
- W3213743969 cites W2023131190 @default.
- W3213743969 cites W2031539284 @default.
- W3213743969 cites W2036197159 @default.
- W3213743969 cites W2049720056 @default.
- W3213743969 cites W2051370783 @default.
- W3213743969 cites W2053296102 @default.
- W3213743969 cites W2054217578 @default.
- W3213743969 cites W2054466380 @default.
- W3213743969 cites W2056381265 @default.
- W3213743969 cites W2057717470 @default.
- W3213743969 cites W2059448777 @default.
- W3213743969 cites W2068035155 @default.
- W3213743969 cites W2074669159 @default.
- W3213743969 cites W2076978163 @default.
- W3213743969 cites W2077345107 @default.
- W3213743969 cites W2083263855 @default.
- W3213743969 cites W2084045976 @default.
- W3213743969 cites W2102360969 @default.
- W3213743969 cites W2103756036 @default.
- W3213743969 cites W2112052642 @default.
- W3213743969 cites W2113407712 @default.
- W3213743969 cites W2130902307 @default.
- W3213743969 cites W2132735659 @default.
- W3213743969 cites W2136625176 @default.
- W3213743969 cites W2137344397 @default.
- W3213743969 cites W2148534890 @default.
- W3213743969 cites W2149418568 @default.
- W3213743969 cites W2158092117 @default.
- W3213743969 cites W2162193517 @default.
- W3213743969 cites W2162776726 @default.
- W3213743969 cites W2163608618 @default.
- W3213743969 cites W2190230032 @default.
- W3213743969 cites W2195780797 @default.
- W3213743969 cites W2203714058 @default.
- W3213743969 cites W2343811890 @default.
- W3213743969 cites W2471909210 @default.
- W3213743969 cites W2503516736 @default.
- W3213743969 cites W2608744881 @default.
- W3213743969 cites W2614954172 @default.
- W3213743969 cites W2681230377 @default.
- W3213743969 cites W2746245696 @default.
- W3213743969 cites W2750077433 @default.
- W3213743969 cites W2752444931 @default.
- W3213743969 cites W2765174074 @default.
- W3213743969 cites W2792224364 @default.
- W3213743969 cites W2889787549 @default.
- W3213743969 cites W2901595840 @default.
- W3213743969 cites W2911469091 @default.
- W3213743969 cites W2913582123 @default.
- W3213743969 cites W2921869257 @default.
- W3213743969 cites W2931372420 @default.
- W3213743969 cites W2973215173 @default.
- W3213743969 cites W2987106324 @default.
- W3213743969 cites W3008638916 @default.
- W3213743969 cites W3014795987 @default.
- W3213743969 cites W3023338115 @default.
- W3213743969 cites W3034669238 @default.
- W3213743969 cites W3040105087 @default.
- W3213743969 cites W3106333376 @default.
- W3213743969 doi "https://doi.org/10.1016/j.amar.2021.100190" @default.
- W3213743969 hasPublicationYear "2022" @default.
- W3213743969 type Work @default.
- W3213743969 sameAs 3213743969 @default.
- W3213743969 citedByCount "3" @default.
- W3213743969 countsByYear W32137439692022 @default.
- W3213743969 countsByYear W32137439692023 @default.
- W3213743969 crossrefType "journal-article" @default.