Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213776949> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W3213776949 endingPage "1670" @default.
- W3213776949 startingPage "1666" @default.
- W3213776949 abstract "Finance sector is the wealth backbone of any country, so risk assessment and fraud detection have great importance. Risk assessment is the process of identifying vulnerabilities to an organization by identifying risk involved in each and every new plans, policies or investments. This paper concentrates on risk level detection of loan application and insurance claim and suggests a predictive model for risk assessment and fraud detection using three efficient machine learning algorithms after applying under sampling technique on data and compares the accuracy difference of them, on imbalanced and resampled data sets with the leading machine learning algorithms Random Forest ad SVM (support vector machine)." @default.
- W3213776949 created "2021-11-22" @default.
- W3213776949 creator A5024581494 @default.
- W3213776949 date "2021-11-16" @default.
- W3213776949 modified "2023-09-23" @default.
- W3213776949 title "Comparative study of various Machine Learning Algorithms using Finance Industry" @default.
- W3213776949 hasPublicationYear "2021" @default.
- W3213776949 type Work @default.
- W3213776949 sameAs 3213776949 @default.
- W3213776949 citedByCount "0" @default.
- W3213776949 crossrefType "journal-article" @default.
- W3213776949 hasAuthorship W3213776949A5024581494 @default.
- W3213776949 hasConcept C10138342 @default.
- W3213776949 hasConcept C11413529 @default.
- W3213776949 hasConcept C119857082 @default.
- W3213776949 hasConcept C12267149 @default.
- W3213776949 hasConcept C154945302 @default.
- W3213776949 hasConcept C162324750 @default.
- W3213776949 hasConcept C169258074 @default.
- W3213776949 hasConcept C2777764128 @default.
- W3213776949 hasConcept C41008148 @default.
- W3213776949 hasConcept C93373587 @default.
- W3213776949 hasConceptScore W3213776949C10138342 @default.
- W3213776949 hasConceptScore W3213776949C11413529 @default.
- W3213776949 hasConceptScore W3213776949C119857082 @default.
- W3213776949 hasConceptScore W3213776949C12267149 @default.
- W3213776949 hasConceptScore W3213776949C154945302 @default.
- W3213776949 hasConceptScore W3213776949C162324750 @default.
- W3213776949 hasConceptScore W3213776949C169258074 @default.
- W3213776949 hasConceptScore W3213776949C2777764128 @default.
- W3213776949 hasConceptScore W3213776949C41008148 @default.
- W3213776949 hasConceptScore W3213776949C93373587 @default.
- W3213776949 hasIssue "10" @default.
- W3213776949 hasLocation W32137769491 @default.
- W3213776949 hasOpenAccess W3213776949 @default.
- W3213776949 hasPrimaryLocation W32137769491 @default.
- W3213776949 hasRelatedWork W2093710959 @default.
- W3213776949 hasRelatedWork W2106357531 @default.
- W3213776949 hasRelatedWork W2317832133 @default.
- W3213776949 hasRelatedWork W2362152539 @default.
- W3213776949 hasRelatedWork W2400134426 @default.
- W3213776949 hasRelatedWork W2619068429 @default.
- W3213776949 hasRelatedWork W2620259308 @default.
- W3213776949 hasRelatedWork W2885287012 @default.
- W3213776949 hasRelatedWork W3005634006 @default.
- W3213776949 hasRelatedWork W3008316723 @default.
- W3213776949 hasRelatedWork W3109128504 @default.
- W3213776949 hasRelatedWork W3124548656 @default.
- W3213776949 hasRelatedWork W3164892971 @default.
- W3213776949 hasRelatedWork W3185304015 @default.
- W3213776949 hasRelatedWork W3185595486 @default.
- W3213776949 hasRelatedWork W3185813230 @default.
- W3213776949 hasRelatedWork W3186819103 @default.
- W3213776949 hasRelatedWork W3195144248 @default.
- W3213776949 hasRelatedWork W3198169880 @default.
- W3213776949 hasRelatedWork W3121736347 @default.
- W3213776949 hasVolume "12" @default.
- W3213776949 isParatext "false" @default.
- W3213776949 isRetracted "false" @default.
- W3213776949 magId "3213776949" @default.
- W3213776949 workType "article" @default.