Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213781762> ?p ?o ?g. }
- W3213781762 endingPage "3223" @default.
- W3213781762 startingPage "3216" @default.
- W3213781762 abstract "Computational Fluid Dynamics (CFD) is used to assist in designing artificial valves and planning procedures, focusing on local flow features. However, assessing the impact on overall cardiovascular function or predicting longer-term outcomes may requires more comprehensive whole heart CFD models. Fitting such models to patient data requires numerous computationally expensive simulations, and depends on specific clinical measurements to constrain model parameters, hampering clinical adoption. Surrogate models can help to accelerate the fitting process while accounting for the added uncertainty. We create a validated patient-specific four-chamber heart CFD model based on the Navier-Stokes-Brinkman (NSB) equations and test Gaussian Process Emulators (GPEs) as a surrogate model for performing a variance-based global sensitivity analysis (GSA). GSA identified preload as the dominant driver of flow in both the right and left side of the heart, respectively. Left-right differences were seen in terms of vascular outflow resistances, with pulmonary artery resistance having a much larger impact on flow than aortic resistance. Our results suggest that GPEs can be used to identify parameters in personalized whole heart CFD models, and highlight the importance of accurate preload measurements." @default.
- W3213781762 created "2021-11-22" @default.
- W3213781762 creator A5000435552 @default.
- W3213781762 creator A5011859160 @default.
- W3213781762 creator A5012616951 @default.
- W3213781762 creator A5019828522 @default.
- W3213781762 creator A5048424735 @default.
- W3213781762 creator A5071305139 @default.
- W3213781762 creator A5078920331 @default.
- W3213781762 creator A5082544361 @default.
- W3213781762 creator A5086347334 @default.
- W3213781762 creator A5087422858 @default.
- W3213781762 date "2022-10-01" @default.
- W3213781762 modified "2023-10-14" @default.
- W3213781762 title "Global Sensitivity Analysis of Four Chamber Heart Hemodynamics Using Surrogate Models" @default.
- W3213781762 cites W1486171856 @default.
- W3213781762 cites W1488244005 @default.
- W3213781762 cites W1942902115 @default.
- W3213781762 cites W1977131602 @default.
- W3213781762 cites W1984426476 @default.
- W3213781762 cites W1988075634 @default.
- W3213781762 cites W1996630203 @default.
- W3213781762 cites W2000194797 @default.
- W3213781762 cites W2014514899 @default.
- W3213781762 cites W2020743056 @default.
- W3213781762 cites W2077969505 @default.
- W3213781762 cites W2088765131 @default.
- W3213781762 cites W2092276341 @default.
- W3213781762 cites W2095539128 @default.
- W3213781762 cites W2099409394 @default.
- W3213781762 cites W2099534878 @default.
- W3213781762 cites W2101689475 @default.
- W3213781762 cites W2107501462 @default.
- W3213781762 cites W2109351597 @default.
- W3213781762 cites W2125107816 @default.
- W3213781762 cites W2130768135 @default.
- W3213781762 cites W2133212072 @default.
- W3213781762 cites W2145121607 @default.
- W3213781762 cites W2145851836 @default.
- W3213781762 cites W2146454444 @default.
- W3213781762 cites W2153944755 @default.
- W3213781762 cites W2154122281 @default.
- W3213781762 cites W2172014636 @default.
- W3213781762 cites W2180795105 @default.
- W3213781762 cites W2284582986 @default.
- W3213781762 cites W2298280587 @default.
- W3213781762 cites W2569457803 @default.
- W3213781762 cites W2743793997 @default.
- W3213781762 cites W2751630023 @default.
- W3213781762 cites W2796241665 @default.
- W3213781762 cites W2801681796 @default.
- W3213781762 cites W2802732209 @default.
- W3213781762 cites W2898458682 @default.
- W3213781762 cites W2900811202 @default.
- W3213781762 cites W2948230027 @default.
- W3213781762 cites W2994823220 @default.
- W3213781762 cites W2999351056 @default.
- W3213781762 cites W3000864094 @default.
- W3213781762 cites W3012286054 @default.
- W3213781762 cites W3026173340 @default.
- W3213781762 cites W3026223623 @default.
- W3213781762 cites W3037817333 @default.
- W3213781762 cites W3039338025 @default.
- W3213781762 cites W3041174132 @default.
- W3213781762 cites W3046227077 @default.
- W3213781762 cites W3088478580 @default.
- W3213781762 cites W3136164129 @default.
- W3213781762 cites W3153574682 @default.
- W3213781762 cites W3175108636 @default.
- W3213781762 cites W3175968147 @default.
- W3213781762 cites W3208523190 @default.
- W3213781762 cites W3216257993 @default.
- W3213781762 cites W4200133548 @default.
- W3213781762 doi "https://doi.org/10.1109/tbme.2022.3163428" @default.
- W3213781762 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35353691" @default.
- W3213781762 hasPublicationYear "2022" @default.
- W3213781762 type Work @default.
- W3213781762 sameAs 3213781762 @default.
- W3213781762 citedByCount "8" @default.
- W3213781762 countsByYear W32137817622022 @default.
- W3213781762 countsByYear W32137817622023 @default.
- W3213781762 crossrefType "journal-article" @default.
- W3213781762 hasAuthorship W3213781762A5000435552 @default.
- W3213781762 hasAuthorship W3213781762A5011859160 @default.
- W3213781762 hasAuthorship W3213781762A5012616951 @default.
- W3213781762 hasAuthorship W3213781762A5019828522 @default.
- W3213781762 hasAuthorship W3213781762A5048424735 @default.
- W3213781762 hasAuthorship W3213781762A5071305139 @default.
- W3213781762 hasAuthorship W3213781762A5078920331 @default.
- W3213781762 hasAuthorship W3213781762A5082544361 @default.
- W3213781762 hasAuthorship W3213781762A5086347334 @default.
- W3213781762 hasAuthorship W3213781762A5087422858 @default.
- W3213781762 hasBestOaLocation W32137817621 @default.
- W3213781762 hasConcept C119857082 @default.
- W3213781762 hasConcept C121332964 @default.
- W3213781762 hasConcept C127413603 @default.
- W3213781762 hasConcept C131675550 @default.
- W3213781762 hasConcept C1633027 @default.