Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213810281> ?p ?o ?g. }
- W3213810281 endingPage "110552" @default.
- W3213810281 startingPage "110552" @default.
- W3213810281 abstract "• Downstream development of initially stratified gas-liquid flow is analyzed. • The liquid film climbs up the walls gradually due to secondary flow in the gas. • The height of wall liquid film is related to the film roughness at the pipe bottom. • The wave-induced liquid lifting is insufficient to maintain annular film. • Liquid film wave structure is qualitatively the same as in vertical pipes. Air-water flow in a 20 mm horizontal pipe is studied using side-view visualization with a background image and Brightness-Based Laser-Induced Fluorescence technique. The investigation is focused on the transition from stratified to annular flow patterns. Stratified flow is organized at the pipe inlet, and the dynamics of liquid lifting up the pipe walls is investigated. During the transition to annular flow, the liquid film is spread over the pipe walls in a stable and gradual manner; the spreading begins before the disturbance waves are formed. Two transition regimes are identified. At large gas and low liquid flow rates, the film is spread up the pipe walls reaching a stable height unaffected by the passing waves. At low gas and large liquid flow rates, the liquid can be lifted by the large-scale waves, but it promptly drains downwards between the waves. Secondary flow in the gas phase is considered the main mechanism of liquid lifting and the only mechanism able to create a stable annular film. The processes of formation and development of disturbance waves are qualitatively the same as previously observed in vertical pipes. Namely, the disturbance waves are formed due to the coalescence of high-frequency initial waves appearing near the inlet; the disturbance waves undergo coalescence and grow in amplitude and speed. Quantitatively, the disturbance wave formation occurs at larger distances from the inlet compared to the vertical flow, and the acceleration rate is much lower. An estimation of circumferential shear stress due to secondary flow is made based on the roughness of the liquid film surface at the bottom of the pipe. An increase in this shear stress increases the height of the liquid film on the pipe walls." @default.
- W3213810281 created "2021-11-22" @default.
- W3213810281 creator A5013817685 @default.
- W3213810281 creator A5046727678 @default.
- W3213810281 creator A5054545829 @default.
- W3213810281 creator A5059176879 @default.
- W3213810281 creator A5067529580 @default.
- W3213810281 date "2022-04-01" @default.
- W3213810281 modified "2023-10-01" @default.
- W3213810281 title "Stratified-to-annular gas-liquid flow patterns transition in a horizontal pipe" @default.
- W3213810281 cites W1203741232 @default.
- W3213810281 cites W1976237106 @default.
- W3213810281 cites W1978949711 @default.
- W3213810281 cites W1981278230 @default.
- W3213810281 cites W1982619498 @default.
- W3213810281 cites W1983977568 @default.
- W3213810281 cites W1985752791 @default.
- W3213810281 cites W1992326693 @default.
- W3213810281 cites W1994466419 @default.
- W3213810281 cites W2002439741 @default.
- W3213810281 cites W2002725695 @default.
- W3213810281 cites W2008673385 @default.
- W3213810281 cites W2016599880 @default.
- W3213810281 cites W2016627704 @default.
- W3213810281 cites W2017054288 @default.
- W3213810281 cites W2017822001 @default.
- W3213810281 cites W2019316073 @default.
- W3213810281 cites W2022193363 @default.
- W3213810281 cites W2024738730 @default.
- W3213810281 cites W2027906420 @default.
- W3213810281 cites W2030111107 @default.
- W3213810281 cites W2030896776 @default.
- W3213810281 cites W2041787209 @default.
- W3213810281 cites W2042560604 @default.
- W3213810281 cites W2048550970 @default.
- W3213810281 cites W2054470982 @default.
- W3213810281 cites W2076422580 @default.
- W3213810281 cites W2076931110 @default.
- W3213810281 cites W2080189497 @default.
- W3213810281 cites W2081083426 @default.
- W3213810281 cites W2098690697 @default.
- W3213810281 cites W2108970235 @default.
- W3213810281 cites W2158660131 @default.
- W3213810281 cites W2193781190 @default.
- W3213810281 cites W2246506758 @default.
- W3213810281 cites W2517995215 @default.
- W3213810281 cites W2592656341 @default.
- W3213810281 cites W2746081606 @default.
- W3213810281 cites W2761520060 @default.
- W3213810281 cites W2789402512 @default.
- W3213810281 cites W2796704440 @default.
- W3213810281 cites W2800934000 @default.
- W3213810281 cites W2808470256 @default.
- W3213810281 cites W2901090746 @default.
- W3213810281 cites W2944387813 @default.
- W3213810281 cites W2963177585 @default.
- W3213810281 cites W2969794923 @default.
- W3213810281 cites W2971087668 @default.
- W3213810281 cites W3002350875 @default.
- W3213810281 cites W3037452740 @default.
- W3213810281 cites W3040873915 @default.
- W3213810281 cites W3041805948 @default.
- W3213810281 cites W3115316403 @default.
- W3213810281 cites W3130062848 @default.
- W3213810281 cites W3131217848 @default.
- W3213810281 cites W3170204355 @default.
- W3213810281 cites W3180396802 @default.
- W3213810281 doi "https://doi.org/10.1016/j.expthermflusci.2021.110552" @default.
- W3213810281 hasPublicationYear "2022" @default.
- W3213810281 type Work @default.
- W3213810281 sameAs 3213810281 @default.
- W3213810281 citedByCount "8" @default.
- W3213810281 countsByYear W32138102812023 @default.
- W3213810281 crossrefType "journal-article" @default.
- W3213810281 hasAuthorship W3213810281A5013817685 @default.
- W3213810281 hasAuthorship W3213810281A5046727678 @default.
- W3213810281 hasAuthorship W3213810281A5054545829 @default.
- W3213810281 hasAuthorship W3213810281A5059176879 @default.
- W3213810281 hasAuthorship W3213810281A5067529580 @default.
- W3213810281 hasConcept C121332964 @default.
- W3213810281 hasConcept C192562407 @default.
- W3213810281 hasConcept C196558001 @default.
- W3213810281 hasConcept C204561356 @default.
- W3213810281 hasConcept C2776310255 @default.
- W3213810281 hasConcept C2779729707 @default.
- W3213810281 hasConcept C38349280 @default.
- W3213810281 hasConcept C57879066 @default.
- W3213810281 hasConceptScore W3213810281C121332964 @default.
- W3213810281 hasConceptScore W3213810281C192562407 @default.
- W3213810281 hasConceptScore W3213810281C196558001 @default.
- W3213810281 hasConceptScore W3213810281C204561356 @default.
- W3213810281 hasConceptScore W3213810281C2776310255 @default.
- W3213810281 hasConceptScore W3213810281C2779729707 @default.
- W3213810281 hasConceptScore W3213810281C38349280 @default.
- W3213810281 hasConceptScore W3213810281C57879066 @default.
- W3213810281 hasFunder F4320324099 @default.
- W3213810281 hasFunder F4320325767 @default.
- W3213810281 hasLocation W32138102811 @default.