Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213843089> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3213843089 endingPage "1571" @default.
- W3213843089 startingPage "1559" @default.
- W3213843089 abstract "This paper presents a gradient-informed design optimization of nuclear reactor core components based on neutronics objectives with both continuous and discrete materials. The main argument in favor of using gradient-informed design optimization is that it scales well with increasing dimensionality of the design space. First, a challenge problem with 121 free parameters is solved with a gradient-informed method and then with a genetic algorithm. Then, a challenge problem to optimize the flux profile of a simplified assembly with eight axial zones is solved. Both challenge problems are solved using directly calculated derivatives from Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI) in the SCALE package. This work also demonstrates how a discrete optimization problem—selection of materials for 121 voxels—can be lifted into a continuous problem with mixed materials. In the continuous space, adjoint-based gradients are well-defined, and gradient descent is applicable. Then, a forcing function is introduced that with the selection of an appropriately sized hyperparameter can be used to guide the optimized continuous solution back into a discrete solution. This paper presents an account of the challenges that were faced when applying a gradient-informed optimization algorithm using a Monte Carlo calculation to estimate the gradient information and compares a gradient descent optimization method to a genetic algorithm optimization of the same geometry. Overall, this work demonstrates the potential use of adjoint-based gradient calculations in design optimization of nuclear systems." @default.
- W3213843089 created "2021-11-22" @default.
- W3213843089 creator A5002422075 @default.
- W3213843089 creator A5026225094 @default.
- W3213843089 creator A5062041284 @default.
- W3213843089 creator A5072013497 @default.
- W3213843089 creator A5076419155 @default.
- W3213843089 creator A5087018415 @default.
- W3213843089 date "2021-11-08" @default.
- W3213843089 modified "2023-09-26" @default.
- W3213843089 title "Gradient-Informed Design Optimization of Select Nuclear Systems" @default.
- W3213843089 cites W1491884081 @default.
- W3213843089 cites W1892352730 @default.
- W3213843089 cites W2011064622 @default.
- W3213843089 cites W2029146575 @default.
- W3213843089 cites W2062785759 @default.
- W3213843089 cites W2071328844 @default.
- W3213843089 cites W2282102599 @default.
- W3213843089 cites W2282509200 @default.
- W3213843089 cites W2928838527 @default.
- W3213843089 cites W2951044786 @default.
- W3213843089 cites W2998374582 @default.
- W3213843089 cites W3006359473 @default.
- W3213843089 cites W3083436577 @default.
- W3213843089 cites W3083892019 @default.
- W3213843089 cites W3111283285 @default.
- W3213843089 cites W4250503569 @default.
- W3213843089 doi "https://doi.org/10.1080/00295639.2021.1987133" @default.
- W3213843089 hasPublicationYear "2021" @default.
- W3213843089 type Work @default.
- W3213843089 sameAs 3213843089 @default.
- W3213843089 citedByCount "2" @default.
- W3213843089 countsByYear W32138430892022 @default.
- W3213843089 countsByYear W32138430892023 @default.
- W3213843089 crossrefType "journal-article" @default.
- W3213843089 hasAuthorship W3213843089A5002422075 @default.
- W3213843089 hasAuthorship W3213843089A5026225094 @default.
- W3213843089 hasAuthorship W3213843089A5062041284 @default.
- W3213843089 hasAuthorship W3213843089A5072013497 @default.
- W3213843089 hasAuthorship W3213843089A5076419155 @default.
- W3213843089 hasAuthorship W3213843089A5087018415 @default.
- W3213843089 hasBestOaLocation W32138430892 @default.
- W3213843089 hasConcept C111030470 @default.
- W3213843089 hasConcept C11413529 @default.
- W3213843089 hasConcept C115680565 @default.
- W3213843089 hasConcept C119857082 @default.
- W3213843089 hasConcept C122357587 @default.
- W3213843089 hasConcept C126255220 @default.
- W3213843089 hasConcept C137836250 @default.
- W3213843089 hasConcept C153258448 @default.
- W3213843089 hasConcept C33923547 @default.
- W3213843089 hasConcept C41008148 @default.
- W3213843089 hasConcept C50644808 @default.
- W3213843089 hasConcept C92995354 @default.
- W3213843089 hasConceptScore W3213843089C111030470 @default.
- W3213843089 hasConceptScore W3213843089C11413529 @default.
- W3213843089 hasConceptScore W3213843089C115680565 @default.
- W3213843089 hasConceptScore W3213843089C119857082 @default.
- W3213843089 hasConceptScore W3213843089C122357587 @default.
- W3213843089 hasConceptScore W3213843089C126255220 @default.
- W3213843089 hasConceptScore W3213843089C137836250 @default.
- W3213843089 hasConceptScore W3213843089C153258448 @default.
- W3213843089 hasConceptScore W3213843089C33923547 @default.
- W3213843089 hasConceptScore W3213843089C41008148 @default.
- W3213843089 hasConceptScore W3213843089C50644808 @default.
- W3213843089 hasConceptScore W3213843089C92995354 @default.
- W3213843089 hasIssue "12" @default.
- W3213843089 hasLocation W32138430891 @default.
- W3213843089 hasLocation W32138430892 @default.
- W3213843089 hasOpenAccess W3213843089 @default.
- W3213843089 hasPrimaryLocation W32138430891 @default.
- W3213843089 hasRelatedWork W1512830207 @default.
- W3213843089 hasRelatedWork W1981529943 @default.
- W3213843089 hasRelatedWork W2331969762 @default.
- W3213843089 hasRelatedWork W2770673730 @default.
- W3213843089 hasRelatedWork W2919833856 @default.
- W3213843089 hasRelatedWork W3024475497 @default.
- W3213843089 hasRelatedWork W3212607441 @default.
- W3213843089 hasRelatedWork W4207065187 @default.
- W3213843089 hasRelatedWork W4287242111 @default.
- W3213843089 hasRelatedWork W55449983 @default.
- W3213843089 hasVolume "196" @default.
- W3213843089 isParatext "false" @default.
- W3213843089 isRetracted "false" @default.
- W3213843089 magId "3213843089" @default.
- W3213843089 workType "article" @default.