Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213854930> ?p ?o ?g. }
- W3213854930 endingPage "6713" @default.
- W3213854930 startingPage "6713" @default.
- W3213854930 abstract "Oxide Precipitation-Hardened (OPH) alloys are a new generation of Oxide Dispersion-Strengthened (ODS) alloys recently developed by the authors. The mechanical properties of this group of alloys are significantly influenced by the chemical composition and appropriate heat treatment (HT). The main steps in producing OPH alloys consist of mechanical alloying (MA) and consolidation, followed by hot rolling. Toughness was obtained from standard tensile test results for different variants of OPH alloy to understand their mechanical properties. Three machine learning techniques were developed using experimental data to simulate different outcomes. The effectivity of the impact of each parameter on the toughness of OPH alloys is discussed. By using the experimental results performed by the authors, the composition of OPH alloys (Al, Mo, Fe, Cr, Ta, Y, and O), HT conditions, and mechanical alloying (MA) were used to train the models as inputs and toughness was set as the output. The results demonstrated that all three models are suitable for predicting the toughness of OPH alloys, and the models fulfilled all the desired requirements. However, several criteria validated the fact that the adaptive neuro-fuzzy inference systems (ANFIS) model results in better conditions and has a better ability to simulate. The mean square error (MSE) for artificial neural networks (ANN), ANFIS, and support vector regression (SVR) models was 459.22, 0.0418, and 651.68 respectively. After performing the sensitivity analysis (SA) an optimized ANFIS model was achieved with a MSE value of 0.003 and demonstrated that HT temperature is the most significant of these parameters, and this acts as a critical rule in training the data sets." @default.
- W3213854930 created "2021-11-22" @default.
- W3213854930 creator A5004231309 @default.
- W3213854930 creator A5005069235 @default.
- W3213854930 creator A5023684905 @default.
- W3213854930 creator A5052285512 @default.
- W3213854930 creator A5054303528 @default.
- W3213854930 creator A5055089135 @default.
- W3213854930 creator A5056050172 @default.
- W3213854930 creator A5080900831 @default.
- W3213854930 date "2021-11-08" @default.
- W3213854930 modified "2023-09-29" @default.
- W3213854930 title "Development of Machine Learning Models to Evaluate the Toughness of OPH Alloys" @default.
- W3213854930 cites W1847657530 @default.
- W3213854930 cites W1968185982 @default.
- W3213854930 cites W1985876292 @default.
- W3213854930 cites W2011580004 @default.
- W3213854930 cites W2016895862 @default.
- W3213854930 cites W2029372760 @default.
- W3213854930 cites W2046738003 @default.
- W3213854930 cites W2094736518 @default.
- W3213854930 cites W2344568978 @default.
- W3213854930 cites W2398526858 @default.
- W3213854930 cites W2515871802 @default.
- W3213854930 cites W2558833709 @default.
- W3213854930 cites W2561125783 @default.
- W3213854930 cites W2584805614 @default.
- W3213854930 cites W2594848193 @default.
- W3213854930 cites W2604291086 @default.
- W3213854930 cites W2744340403 @default.
- W3213854930 cites W2756047423 @default.
- W3213854930 cites W2766911631 @default.
- W3213854930 cites W2803370956 @default.
- W3213854930 cites W2888237443 @default.
- W3213854930 cites W2890790760 @default.
- W3213854930 cites W2899874183 @default.
- W3213854930 cites W2912996601 @default.
- W3213854930 cites W2923297733 @default.
- W3213854930 cites W2949916317 @default.
- W3213854930 cites W2964003877 @default.
- W3213854930 cites W2965172889 @default.
- W3213854930 cites W2972032048 @default.
- W3213854930 cites W2980539464 @default.
- W3213854930 cites W2980840534 @default.
- W3213854930 cites W3001507437 @default.
- W3213854930 cites W3008648117 @default.
- W3213854930 cites W3016624250 @default.
- W3213854930 cites W3033772027 @default.
- W3213854930 cites W3052541078 @default.
- W3213854930 cites W3095673011 @default.
- W3213854930 cites W3106879329 @default.
- W3213854930 cites W3113054357 @default.
- W3213854930 cites W3126173873 @default.
- W3213854930 cites W3131102893 @default.
- W3213854930 cites W3139844155 @default.
- W3213854930 cites W3178940633 @default.
- W3213854930 cites W3197243272 @default.
- W3213854930 cites W4233358047 @default.
- W3213854930 cites W2414236494 @default.
- W3213854930 doi "https://doi.org/10.3390/ma14216713" @default.
- W3213854930 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8588127" @default.
- W3213854930 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34772239" @default.
- W3213854930 hasPublicationYear "2021" @default.
- W3213854930 type Work @default.
- W3213854930 sameAs 3213854930 @default.
- W3213854930 citedByCount "3" @default.
- W3213854930 countsByYear W32138549302021 @default.
- W3213854930 countsByYear W32138549302022 @default.
- W3213854930 countsByYear W32138549302023 @default.
- W3213854930 crossrefType "journal-article" @default.
- W3213854930 hasAuthorship W3213854930A5004231309 @default.
- W3213854930 hasAuthorship W3213854930A5005069235 @default.
- W3213854930 hasAuthorship W3213854930A5023684905 @default.
- W3213854930 hasAuthorship W3213854930A5052285512 @default.
- W3213854930 hasAuthorship W3213854930A5054303528 @default.
- W3213854930 hasAuthorship W3213854930A5055089135 @default.
- W3213854930 hasAuthorship W3213854930A5056050172 @default.
- W3213854930 hasAuthorship W3213854930A5080900831 @default.
- W3213854930 hasBestOaLocation W32138549301 @default.
- W3213854930 hasConcept C105795698 @default.
- W3213854930 hasConcept C112950240 @default.
- W3213854930 hasConcept C119857082 @default.
- W3213854930 hasConcept C139945424 @default.
- W3213854930 hasConcept C154945302 @default.
- W3213854930 hasConcept C159985019 @default.
- W3213854930 hasConcept C186108316 @default.
- W3213854930 hasConcept C192562407 @default.
- W3213854930 hasConcept C195975749 @default.
- W3213854930 hasConcept C2780026712 @default.
- W3213854930 hasConcept C33923547 @default.
- W3213854930 hasConcept C41008148 @default.
- W3213854930 hasConcept C50644808 @default.
- W3213854930 hasConcept C58166 @default.
- W3213854930 hasConcept C99595764 @default.
- W3213854930 hasConceptScore W3213854930C105795698 @default.
- W3213854930 hasConceptScore W3213854930C112950240 @default.
- W3213854930 hasConceptScore W3213854930C119857082 @default.
- W3213854930 hasConceptScore W3213854930C139945424 @default.