Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213867510> ?p ?o ?g. }
- W3213867510 endingPage "560" @default.
- W3213867510 startingPage "545" @default.
- W3213867510 abstract "Disturbance in redox homeostasis always leads to oxidative damages to cellular components, which inhibits cancer cell proliferation and causes tumor regression. Therefore, synergistic effects arising from cellular redox imbalance together with other treatment modalities are worth further investigation. Herein, a metal-organic framework nanosystem (NMOF) based on coordination between Fe (III) and 4,4,4,4-(porphine-5,10,15,20-tetrayl) tetrakis (benzoic acid) (TCPP) was synthesized through a one-pot method. After surface capping of silk fibroin (SF) to form NMOF@SF nanoparticles (NPs), this nanoplatform can serve as an eligible nanocarrier to deliver tirapazamine (TPZ), a hypoxia-activated precursor. As-developed NS@TPZ (NST) NPs remained inactive in the normal tissue, whereas became highly active upon endocytosis by tumor cells via glutathione (GSH)-mediated reduction of Fe (III) into Fe (II), further enabling Fe (II)-mediated chemodynamic therapy (CDT). Upon optical laser irradiation, TCPP-mediated photodynamic therapy (PDT) coordinated with CDT to aggravate intracellular oxidative stress. Thus, such reactive oxygen species accumulation and GSH deprivation contributed to a deleterious redox dyshomeostasis. On the other hand, local deoxygenation caused by PDT can increase the cytotoxicity of released TPZ, which significantly improved the integral therapeutic effectiveness relying on the combined redox balance disruption and bioreductive chemotherapy. More importantly, severe immunogenic cell death can be triggered by the combinatorial treatment modalities and the presence of SF, which facilitated an almost complete tumor eradication in vivo. Taken together, this paradigm provides an insightful strategy for tumor-specific redox dyshomeostasis treatment synergized by deoxygenation-driven chemotherapy, which can remarkably enhance antitumor efficacy with negligible adverse effects. STATEMENT OF SIGNIFICANCE: Recently, silk fibroin (SF) has been demonstrated to be effective in activating antitumor immune system through polarization tumor-associated macrophages into M1 subtype. However, engineering SF into multifunctional nanocomposites is seldom reported for combination tumor therapy. In another aspect, disruption of redox homeostasis becomes increasingly attractive for tumor suppression with high clinical-relevance. Herein, we established a newfashioned NMOF nanosystem, named as NST, for tumor-specific redox dyshomeostasis treatment synergized by deoxygenation-driven chemotherapy. This platform takes advantages of Fe2+/Fe3+ coupled Fenton-like reaction and GSH depletion, as well as TCPP-mediated photosensitization for admirable redox unbalancing, which further initiates hypoxia-relevant toxin of TPZ for chemotherapy. Finally, combinatorial treatments and the presence of SF could trigger ICD for rendering a complete tumor eradication in vivo." @default.
- W3213867510 created "2021-11-22" @default.
- W3213867510 creator A5014322160 @default.
- W3213867510 creator A5020186059 @default.
- W3213867510 creator A5028867498 @default.
- W3213867510 creator A5038529101 @default.
- W3213867510 creator A5043116426 @default.
- W3213867510 creator A5046659556 @default.
- W3213867510 creator A5057013023 @default.
- W3213867510 creator A5077558876 @default.
- W3213867510 date "2022-01-01" @default.
- W3213867510 modified "2023-10-16" @default.
- W3213867510 title "Silk fibroin-capped metal-organic framework for tumor-specific redox dyshomeostasis treatment synergized by deoxygenation-driven chemotherapy" @default.
- W3213867510 cites W1778497012 @default.
- W3213867510 cites W2039698899 @default.
- W3213867510 cites W2062798855 @default.
- W3213867510 cites W2163748007 @default.
- W3213867510 cites W2191751320 @default.
- W3213867510 cites W2255357451 @default.
- W3213867510 cites W2275001158 @default.
- W3213867510 cites W2415945663 @default.
- W3213867510 cites W2520379539 @default.
- W3213867510 cites W2586840087 @default.
- W3213867510 cites W2592281030 @default.
- W3213867510 cites W2603664048 @default.
- W3213867510 cites W2607739098 @default.
- W3213867510 cites W2617122582 @default.
- W3213867510 cites W2757522502 @default.
- W3213867510 cites W2768237289 @default.
- W3213867510 cites W2790757017 @default.
- W3213867510 cites W2800573777 @default.
- W3213867510 cites W2883440571 @default.
- W3213867510 cites W2884616676 @default.
- W3213867510 cites W2890175437 @default.
- W3213867510 cites W2896511608 @default.
- W3213867510 cites W2900847421 @default.
- W3213867510 cites W2908324562 @default.
- W3213867510 cites W2929647940 @default.
- W3213867510 cites W2939915272 @default.
- W3213867510 cites W2946949749 @default.
- W3213867510 cites W2947285156 @default.
- W3213867510 cites W2947371554 @default.
- W3213867510 cites W2948231961 @default.
- W3213867510 cites W2950071015 @default.
- W3213867510 cites W2965601414 @default.
- W3213867510 cites W2966092081 @default.
- W3213867510 cites W2966094674 @default.
- W3213867510 cites W2976274973 @default.
- W3213867510 cites W2990467472 @default.
- W3213867510 cites W2994778613 @default.
- W3213867510 cites W3004318250 @default.
- W3213867510 cites W3011642937 @default.
- W3213867510 cites W3015248720 @default.
- W3213867510 cites W3020246886 @default.
- W3213867510 cites W3028332135 @default.
- W3213867510 cites W3031412440 @default.
- W3213867510 cites W3046968360 @default.
- W3213867510 cites W3048510814 @default.
- W3213867510 cites W3049295663 @default.
- W3213867510 cites W3081996782 @default.
- W3213867510 cites W3096243090 @default.
- W3213867510 cites W3101915942 @default.
- W3213867510 cites W3108097747 @default.
- W3213867510 cites W3119846021 @default.
- W3213867510 cites W3123880214 @default.
- W3213867510 cites W3128939072 @default.
- W3213867510 cites W3131079059 @default.
- W3213867510 cites W3136113031 @default.
- W3213867510 doi "https://doi.org/10.1016/j.actbio.2021.11.009" @default.
- W3213867510 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34775125" @default.
- W3213867510 hasPublicationYear "2022" @default.
- W3213867510 type Work @default.
- W3213867510 sameAs 3213867510 @default.
- W3213867510 citedByCount "13" @default.
- W3213867510 countsByYear W32138675102022 @default.
- W3213867510 countsByYear W32138675102023 @default.
- W3213867510 crossrefType "journal-article" @default.
- W3213867510 hasAuthorship W3213867510A5014322160 @default.
- W3213867510 hasAuthorship W3213867510A5020186059 @default.
- W3213867510 hasAuthorship W3213867510A5028867498 @default.
- W3213867510 hasAuthorship W3213867510A5038529101 @default.
- W3213867510 hasAuthorship W3213867510A5043116426 @default.
- W3213867510 hasAuthorship W3213867510A5046659556 @default.
- W3213867510 hasAuthorship W3213867510A5057013023 @default.
- W3213867510 hasAuthorship W3213867510A5077558876 @default.
- W3213867510 hasConcept C109316439 @default.
- W3213867510 hasConcept C12554922 @default.
- W3213867510 hasConcept C141071460 @default.
- W3213867510 hasConcept C155672457 @default.
- W3213867510 hasConcept C161790260 @default.
- W3213867510 hasConcept C171250308 @default.
- W3213867510 hasConcept C178790620 @default.
- W3213867510 hasConcept C181199279 @default.
- W3213867510 hasConcept C18150654 @default.
- W3213867510 hasConcept C185592680 @default.
- W3213867510 hasConcept C192562407 @default.
- W3213867510 hasConcept C202751555 @default.
- W3213867510 hasConcept C2776151105 @default.