Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213892977> ?p ?o ?g. }
- W3213892977 endingPage "693" @default.
- W3213892977 startingPage "683" @default.
- W3213892977 abstract "Medium access control (MAC) protocol identification in the context of cognitive radio is a challenging issue, which is usually solved by the support vector machine (SVM) method. To avoid manual feature extraction in SVM and realize accurate identification, a graphical scheme is adopted in this work. Firstly, the identification problem is modeled to analyze the distinctions of four MAC protocols by exploiting time and power features of the received signal. Then, we propose a convolutional neural network (CNN)-based MAC protocol identification (C-MPI) method, which combines CNN with the time-frequency image that contains time, frequency and energy three dimensional information. Moreover, in order to further improve the identification performance, a modified CNN with a squeeze-and-excitation mechanism-based MAC protocol identification (CSE-MPI) approach is developed, which plugs the SE block, a channel-wise attention mechanism, into classical CNN. Numerical simulations are provided to demonstrate the effectiveness of the proposed approaches." @default.
- W3213892977 created "2021-11-22" @default.
- W3213892977 creator A5042122864 @default.
- W3213892977 creator A5043518924 @default.
- W3213892977 creator A5062699003 @default.
- W3213892977 creator A5076455133 @default.
- W3213892977 creator A5091127487 @default.
- W3213892977 date "2022-06-01" @default.
- W3213892977 modified "2023-10-16" @default.
- W3213892977 title "Deep Learning Empowered MAC Protocol Identification With Squeeze-and-Excitation Networks" @default.
- W3213892977 cites W1981950047 @default.
- W3213892977 cites W1985683890 @default.
- W3213892977 cites W1993602208 @default.
- W3213892977 cites W1993688539 @default.
- W3213892977 cites W2071707134 @default.
- W3213892977 cites W2096216442 @default.
- W3213892977 cites W2111136196 @default.
- W3213892977 cites W2145772337 @default.
- W3213892977 cites W2162721555 @default.
- W3213892977 cites W2165878107 @default.
- W3213892977 cites W2168078104 @default.
- W3213892977 cites W2272847350 @default.
- W3213892977 cites W2624887404 @default.
- W3213892977 cites W2695951553 @default.
- W3213892977 cites W2734408173 @default.
- W3213892977 cites W2807731816 @default.
- W3213892977 cites W2810081224 @default.
- W3213892977 cites W2810901824 @default.
- W3213892977 cites W2884089434 @default.
- W3213892977 cites W2884367402 @default.
- W3213892977 cites W2900908517 @default.
- W3213892977 cites W2901798886 @default.
- W3213892977 cites W2908993293 @default.
- W3213892977 cites W2951775076 @default.
- W3213892977 cites W2959546144 @default.
- W3213892977 cites W2963420686 @default.
- W3213892977 cites W2963495494 @default.
- W3213892977 cites W2963895067 @default.
- W3213892977 cites W2964909045 @default.
- W3213892977 cites W2969276548 @default.
- W3213892977 cites W2974893298 @default.
- W3213892977 cites W2982286025 @default.
- W3213892977 cites W2993464084 @default.
- W3213892977 cites W2996232706 @default.
- W3213892977 cites W2998637290 @default.
- W3213892977 cites W3000235499 @default.
- W3213892977 cites W3022086662 @default.
- W3213892977 cites W3086892208 @default.
- W3213892977 cites W3091255494 @default.
- W3213892977 cites W3095612572 @default.
- W3213892977 cites W3100321043 @default.
- W3213892977 cites W3104028856 @default.
- W3213892977 cites W3113857838 @default.
- W3213892977 doi "https://doi.org/10.1109/tccn.2021.3126306" @default.
- W3213892977 hasPublicationYear "2022" @default.
- W3213892977 type Work @default.
- W3213892977 sameAs 3213892977 @default.
- W3213892977 citedByCount "2" @default.
- W3213892977 countsByYear W32138929772022 @default.
- W3213892977 countsByYear W32138929772023 @default.
- W3213892977 crossrefType "journal-article" @default.
- W3213892977 hasAuthorship W3213892977A5042122864 @default.
- W3213892977 hasAuthorship W3213892977A5043518924 @default.
- W3213892977 hasAuthorship W3213892977A5062699003 @default.
- W3213892977 hasAuthorship W3213892977A5076455133 @default.
- W3213892977 hasAuthorship W3213892977A5091127487 @default.
- W3213892977 hasConcept C116834253 @default.
- W3213892977 hasConcept C12267149 @default.
- W3213892977 hasConcept C127162648 @default.
- W3213892977 hasConcept C142724271 @default.
- W3213892977 hasConcept C151730666 @default.
- W3213892977 hasConcept C153180895 @default.
- W3213892977 hasConcept C154945302 @default.
- W3213892977 hasConcept C204787440 @default.
- W3213892977 hasConcept C2524010 @default.
- W3213892977 hasConcept C2777210771 @default.
- W3213892977 hasConcept C2779343474 @default.
- W3213892977 hasConcept C2780385302 @default.
- W3213892977 hasConcept C31258907 @default.
- W3213892977 hasConcept C33923547 @default.
- W3213892977 hasConcept C41008148 @default.
- W3213892977 hasConcept C52622490 @default.
- W3213892977 hasConcept C59822182 @default.
- W3213892977 hasConcept C71924100 @default.
- W3213892977 hasConcept C81363708 @default.
- W3213892977 hasConcept C86803240 @default.
- W3213892977 hasConceptScore W3213892977C116834253 @default.
- W3213892977 hasConceptScore W3213892977C12267149 @default.
- W3213892977 hasConceptScore W3213892977C127162648 @default.
- W3213892977 hasConceptScore W3213892977C142724271 @default.
- W3213892977 hasConceptScore W3213892977C151730666 @default.
- W3213892977 hasConceptScore W3213892977C153180895 @default.
- W3213892977 hasConceptScore W3213892977C154945302 @default.
- W3213892977 hasConceptScore W3213892977C204787440 @default.
- W3213892977 hasConceptScore W3213892977C2524010 @default.
- W3213892977 hasConceptScore W3213892977C2777210771 @default.
- W3213892977 hasConceptScore W3213892977C2779343474 @default.
- W3213892977 hasConceptScore W3213892977C2780385302 @default.