Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213919618> ?p ?o ?g. }
- W3213919618 endingPage "103954" @default.
- W3213919618 startingPage "103954" @default.
- W3213919618 abstract "Clustering Algorithms have just fascinated significant devotion in machine learning applications owing to their great competence. Nevertheless, the existing algorithms quite have approximately disputes that need to be further deciphered. For example, most existing algorithms transform one type of feature into another type, which disregards the explicit possessions of information. In addition, most of them deliberate whole features, which may lead to difficulty in calculation and effect in sub-optimal presentation. To address the above difficulties, this paper proposes a novel technique for clustering categorical and numerical features based on feature space clustering of mixed data with missing information (FSCMMI). The procedure involves three stages. Initially, FSCMMI divides the given dataset depending on missing information in instances and features types. The second stage uses the decision-tree procedure to identify the association between instances. Finally, the third stage is used for computing the closeness measure for numerical features and categorical features. Meanwhile, we propose a new training algorithm to cluster mixed datasets. Extensive experimental results on benchmark datasets show that the proposed FSCMMI outperforms several state-of-art clustering methods in terms of accuracy and efficiency." @default.
- W3213919618 created "2021-11-22" @default.
- W3213919618 creator A5033607909 @default.
- W3213919618 date "2022-01-01" @default.
- W3213919618 modified "2023-09-27" @default.
- W3213919618 title "Machine learning algorithm for feature space clustering of mixed data with missing information based on molecule similarity" @default.
- W3213919618 cites W1193984273 @default.
- W3213919618 cites W1560541823 @default.
- W3213919618 cites W1562753845 @default.
- W3213919618 cites W191006456 @default.
- W3213919618 cites W1959178355 @default.
- W3213919618 cites W1967987265 @default.
- W3213919618 cites W1972132022 @default.
- W3213919618 cites W1972532012 @default.
- W3213919618 cites W1973041621 @default.
- W3213919618 cites W1980317569 @default.
- W3213919618 cites W1983508218 @default.
- W3213919618 cites W1988387273 @default.
- W3213919618 cites W1990643970 @default.
- W3213919618 cites W1992147426 @default.
- W3213919618 cites W1992419399 @default.
- W3213919618 cites W2006533296 @default.
- W3213919618 cites W2010007592 @default.
- W3213919618 cites W2011430131 @default.
- W3213919618 cites W2022201359 @default.
- W3213919618 cites W2025931908 @default.
- W3213919618 cites W203389731 @default.
- W3213919618 cites W2035435035 @default.
- W3213919618 cites W2036372690 @default.
- W3213919618 cites W2037414882 @default.
- W3213919618 cites W2042035594 @default.
- W3213919618 cites W2057712948 @default.
- W3213919618 cites W2065811242 @default.
- W3213919618 cites W2067200401 @default.
- W3213919618 cites W2072017174 @default.
- W3213919618 cites W2075534803 @default.
- W3213919618 cites W2077551920 @default.
- W3213919618 cites W2094909687 @default.
- W3213919618 cites W2095512713 @default.
- W3213919618 cites W2097740639 @default.
- W3213919618 cites W2101741219 @default.
- W3213919618 cites W2102880413 @default.
- W3213919618 cites W2107303832 @default.
- W3213919618 cites W2110603409 @default.
- W3213919618 cites W2111685427 @default.
- W3213919618 cites W2112210867 @default.
- W3213919618 cites W2117513046 @default.
- W3213919618 cites W2120887445 @default.
- W3213919618 cites W2121410881 @default.
- W3213919618 cites W2122943553 @default.
- W3213919618 cites W2125070513 @default.
- W3213919618 cites W2130880600 @default.
- W3213919618 cites W2132149726 @default.
- W3213919618 cites W2137578940 @default.
- W3213919618 cites W2140405352 @default.
- W3213919618 cites W2143687373 @default.
- W3213919618 cites W2144549472 @default.
- W3213919618 cites W2145328215 @default.
- W3213919618 cites W2148425841 @default.
- W3213919618 cites W2149230623 @default.
- W3213919618 cites W2150853899 @default.
- W3213919618 cites W2157305948 @default.
- W3213919618 cites W2159748429 @default.
- W3213919618 cites W2160696406 @default.
- W3213919618 cites W2161985854 @default.
- W3213919618 cites W2162151748 @default.
- W3213919618 cites W2168457746 @default.
- W3213919618 cites W2338257905 @default.
- W3213919618 cites W2399473281 @default.
- W3213919618 cites W2425246132 @default.
- W3213919618 cites W2470462496 @default.
- W3213919618 cites W2952541077 @default.
- W3213919618 cites W3003734944 @default.
- W3213919618 cites W3033682570 @default.
- W3213919618 cites W3068004770 @default.
- W3213919618 cites W3148981562 @default.
- W3213919618 doi "https://doi.org/10.1016/j.jbi.2021.103954" @default.
- W3213919618 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34793972" @default.
- W3213919618 hasPublicationYear "2022" @default.
- W3213919618 type Work @default.
- W3213919618 sameAs 3213919618 @default.
- W3213919618 citedByCount "1" @default.
- W3213919618 countsByYear W32139196182022 @default.
- W3213919618 crossrefType "journal-article" @default.
- W3213919618 hasAuthorship W3213919618A5033607909 @default.
- W3213919618 hasBestOaLocation W32139196181 @default.
- W3213919618 hasConcept C11413529 @default.
- W3213919618 hasConcept C119857082 @default.
- W3213919618 hasConcept C124101348 @default.
- W3213919618 hasConcept C134306372 @default.
- W3213919618 hasConcept C138885662 @default.
- W3213919618 hasConcept C153180895 @default.
- W3213919618 hasConcept C154945302 @default.
- W3213919618 hasConcept C2776401178 @default.
- W3213919618 hasConcept C2779545769 @default.
- W3213919618 hasConcept C33923547 @default.
- W3213919618 hasConcept C41008148 @default.
- W3213919618 hasConcept C41895202 @default.