Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213949181> ?p ?o ?g. }
- W3213949181 abstract "Machine learning opens new avenues for modeling correlated materials. Quantum embedding approaches, such as dynamical mean-field theory (DMFT), provide corrections to first-principles calculations for strongly correlated materials, which are poorly described at lower levels of theory. Such embedding approaches are computationally demanding on classical computing architectures, and hence remain restricted to small systems, which limits the scope of applicability without exceptional computational resources. Here we outline a data-driven machine-learning process for solving the Anderson impurity model (AIM)---the central component of DMFT calculations. The key advance is the use of an ensemble error-correction approach to generate fast and accurate solutions of AIM. An example calculation of the Mott transition using DMFT in the single band Hubbard model is given as an example of the technique, and is validated against the most accurate available method. This approach is called data-driven dynamical mean-field theory (${mathbf{d}}^{3}mathbf{MFT}$)." @default.
- W3213949181 created "2021-11-22" @default.
- W3213949181 creator A5007986191 @default.
- W3213949181 creator A5031571281 @default.
- W3213949181 creator A5032398706 @default.
- W3213949181 creator A5066834801 @default.
- W3213949181 creator A5076071537 @default.
- W3213949181 date "2021-11-17" @default.
- W3213949181 modified "2023-10-17" @default.
- W3213949181 title "Data-driven dynamical mean-field theory: An error-correction approach to solve the quantum many-body problem using machine learning" @default.
- W3213949181 cites W1966421965 @default.
- W3213949181 cites W1971472669 @default.
- W3213949181 cites W1972044528 @default.
- W3213949181 cites W1983140812 @default.
- W3213949181 cites W1986984363 @default.
- W3213949181 cites W1988150410 @default.
- W3213949181 cites W1992161108 @default.
- W3213949181 cites W1995061716 @default.
- W3213949181 cites W1997127905 @default.
- W3213949181 cites W2006455887 @default.
- W3213949181 cites W2018162374 @default.
- W3213949181 cites W2021751658 @default.
- W3213949181 cites W2023125103 @default.
- W3213949181 cites W2025444507 @default.
- W3213949181 cites W2038941806 @default.
- W3213949181 cites W2040793946 @default.
- W3213949181 cites W2054686000 @default.
- W3213949181 cites W2057858097 @default.
- W3213949181 cites W2068539538 @default.
- W3213949181 cites W2083415705 @default.
- W3213949181 cites W2122045419 @default.
- W3213949181 cites W2161516432 @default.
- W3213949181 cites W2165959915 @default.
- W3213949181 cites W2224281019 @default.
- W3213949181 cites W2337082154 @default.
- W3213949181 cites W2419175238 @default.
- W3213949181 cites W2516533688 @default.
- W3213949181 cites W2530117613 @default.
- W3213949181 cites W2530819665 @default.
- W3213949181 cites W2606574146 @default.
- W3213949181 cites W2742177062 @default.
- W3213949181 cites W2756291233 @default.
- W3213949181 cites W2781887058 @default.
- W3213949181 cites W2902146298 @default.
- W3213949181 cites W2981665713 @default.
- W3213949181 cites W3101479050 @default.
- W3213949181 cites W3103863530 @default.
- W3213949181 cites W3104284873 @default.
- W3213949181 cites W3105281145 @default.
- W3213949181 cites W3109741774 @default.
- W3213949181 cites W3173137709 @default.
- W3213949181 cites W942596684 @default.
- W3213949181 doi "https://doi.org/10.1103/physrevb.104.205120" @default.
- W3213949181 hasPublicationYear "2021" @default.
- W3213949181 type Work @default.
- W3213949181 sameAs 3213949181 @default.
- W3213949181 citedByCount "4" @default.
- W3213949181 countsByYear W32139491812022 @default.
- W3213949181 crossrefType "journal-article" @default.
- W3213949181 hasAuthorship W3213949181A5007986191 @default.
- W3213949181 hasAuthorship W3213949181A5031571281 @default.
- W3213949181 hasAuthorship W3213949181A5032398706 @default.
- W3213949181 hasAuthorship W3213949181A5066834801 @default.
- W3213949181 hasAuthorship W3213949181A5076071537 @default.
- W3213949181 hasBestOaLocation W32139491812 @default.
- W3213949181 hasConcept C105795698 @default.
- W3213949181 hasConcept C106074065 @default.
- W3213949181 hasConcept C111919701 @default.
- W3213949181 hasConcept C11413529 @default.
- W3213949181 hasConcept C121332964 @default.
- W3213949181 hasConcept C121864883 @default.
- W3213949181 hasConcept C150625730 @default.
- W3213949181 hasConcept C152365726 @default.
- W3213949181 hasConcept C154945302 @default.
- W3213949181 hasConcept C16016025 @default.
- W3213949181 hasConcept C19499675 @default.
- W3213949181 hasConcept C199360897 @default.
- W3213949181 hasConcept C202213908 @default.
- W3213949181 hasConcept C202444582 @default.
- W3213949181 hasConcept C26517878 @default.
- W3213949181 hasConcept C2778012447 @default.
- W3213949181 hasConcept C33923547 @default.
- W3213949181 hasConcept C38652104 @default.
- W3213949181 hasConcept C41008148 @default.
- W3213949181 hasConcept C41608201 @default.
- W3213949181 hasConcept C54101563 @default.
- W3213949181 hasConcept C62520636 @default.
- W3213949181 hasConcept C84114770 @default.
- W3213949181 hasConcept C9652623 @default.
- W3213949181 hasConcept C98045186 @default.
- W3213949181 hasConceptScore W3213949181C105795698 @default.
- W3213949181 hasConceptScore W3213949181C106074065 @default.
- W3213949181 hasConceptScore W3213949181C111919701 @default.
- W3213949181 hasConceptScore W3213949181C11413529 @default.
- W3213949181 hasConceptScore W3213949181C121332964 @default.
- W3213949181 hasConceptScore W3213949181C121864883 @default.
- W3213949181 hasConceptScore W3213949181C150625730 @default.
- W3213949181 hasConceptScore W3213949181C152365726 @default.
- W3213949181 hasConceptScore W3213949181C154945302 @default.
- W3213949181 hasConceptScore W3213949181C16016025 @default.