Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213972421> ?p ?o ?g. }
- W3213972421 endingPage "28" @default.
- W3213972421 startingPage "1" @default.
- W3213972421 abstract "The Reynolds-averaged Navier-Stokes (RANS) equations are widely used in turbulence applications. They require accurately modelling the anisotropic Reynolds stress tensor, for which traditional Reynolds stress closure models only yield reliable results in some flow configurations. In the last few years, there has been a surge of work aiming at using data-driven approaches to tackle this problem. The majority of previous work has focused on the development of fully connected networks for modelling the anisotropic Reynolds stress tensor. In this paper, we expand upon recent work for turbulent channel flow and develop new convolutional neural network (CNN) models that are able to accurately predict the normalised anisotropic Reynolds stress tensor. We apply the new CNN model to a number of one-dimensional turbulent flows. Additionally, we present interpretability techniques that help drive the model design and provide guidance on the model behaviour in relation to the underlying physics." @default.
- W3213972421 created "2021-11-22" @default.
- W3213972421 creator A5011315981 @default.
- W3213972421 creator A5022524322 @default.
- W3213972421 creator A5073916939 @default.
- W3213972421 date "2021-11-10" @default.
- W3213972421 modified "2023-09-23" @default.
- W3213972421 title "Convolutional neural network models and interpretability for the anisotropic reynolds stress tensor in turbulent one-dimensional flows" @default.
- W3213972421 cites W1505037071 @default.
- W3213972421 cites W1677182931 @default.
- W3213972421 cites W1849277567 @default.
- W3213972421 cites W1994582801 @default.
- W3213972421 cites W1999168691 @default.
- W3213972421 cites W2009797711 @default.
- W3213972421 cites W2019645917 @default.
- W3213972421 cites W2097726121 @default.
- W3213972421 cites W2106607398 @default.
- W3213972421 cites W2121221908 @default.
- W3213972421 cites W2283351822 @default.
- W3213972421 cites W2345737627 @default.
- W3213972421 cites W2534240011 @default.
- W3213972421 cites W2795982117 @default.
- W3213972421 cites W2802768264 @default.
- W3213972421 cites W2963095307 @default.
- W3213972421 cites W2963433607 @default.
- W3213972421 cites W2963847595 @default.
- W3213972421 cites W2964303497 @default.
- W3213972421 cites W2990651396 @default.
- W3213972421 cites W2994070579 @default.
- W3213972421 cites W3012045275 @default.
- W3213972421 cites W3098665322 @default.
- W3213972421 cites W3100574842 @default.
- W3213972421 cites W3128803576 @default.
- W3213972421 cites W3151206940 @default.
- W3213972421 cites W3194668998 @default.
- W3213972421 doi "https://doi.org/10.1080/14685248.2021.1999459" @default.
- W3213972421 hasPublicationYear "2021" @default.
- W3213972421 type Work @default.
- W3213972421 sameAs 3213972421 @default.
- W3213972421 citedByCount "1" @default.
- W3213972421 countsByYear W32139724212022 @default.
- W3213972421 crossrefType "journal-article" @default.
- W3213972421 hasAuthorship W3213972421A5011315981 @default.
- W3213972421 hasAuthorship W3213972421A5022524322 @default.
- W3213972421 hasAuthorship W3213972421A5073916939 @default.
- W3213972421 hasBestOaLocation W32139724211 @default.
- W3213972421 hasConcept C121332964 @default.
- W3213972421 hasConcept C121864883 @default.
- W3213972421 hasConcept C147196274 @default.
- W3213972421 hasConcept C150711758 @default.
- W3213972421 hasConcept C152846280 @default.
- W3213972421 hasConcept C154945302 @default.
- W3213972421 hasConcept C155281189 @default.
- W3213972421 hasConcept C157334427 @default.
- W3213972421 hasConcept C182748727 @default.
- W3213972421 hasConcept C189223162 @default.
- W3213972421 hasConcept C196558001 @default.
- W3213972421 hasConcept C2524010 @default.
- W3213972421 hasConcept C2781067378 @default.
- W3213972421 hasConcept C32526432 @default.
- W3213972421 hasConcept C33923547 @default.
- W3213972421 hasConcept C41008148 @default.
- W3213972421 hasConcept C57879066 @default.
- W3213972421 hasConcept C63931686 @default.
- W3213972421 hasConceptScore W3213972421C121332964 @default.
- W3213972421 hasConceptScore W3213972421C121864883 @default.
- W3213972421 hasConceptScore W3213972421C147196274 @default.
- W3213972421 hasConceptScore W3213972421C150711758 @default.
- W3213972421 hasConceptScore W3213972421C152846280 @default.
- W3213972421 hasConceptScore W3213972421C154945302 @default.
- W3213972421 hasConceptScore W3213972421C155281189 @default.
- W3213972421 hasConceptScore W3213972421C157334427 @default.
- W3213972421 hasConceptScore W3213972421C182748727 @default.
- W3213972421 hasConceptScore W3213972421C189223162 @default.
- W3213972421 hasConceptScore W3213972421C196558001 @default.
- W3213972421 hasConceptScore W3213972421C2524010 @default.
- W3213972421 hasConceptScore W3213972421C2781067378 @default.
- W3213972421 hasConceptScore W3213972421C32526432 @default.
- W3213972421 hasConceptScore W3213972421C33923547 @default.
- W3213972421 hasConceptScore W3213972421C41008148 @default.
- W3213972421 hasConceptScore W3213972421C57879066 @default.
- W3213972421 hasConceptScore W3213972421C63931686 @default.
- W3213972421 hasIssue "1-2" @default.
- W3213972421 hasLocation W32139724211 @default.
- W3213972421 hasLocation W32139724212 @default.
- W3213972421 hasLocation W32139724213 @default.
- W3213972421 hasOpenAccess W3213972421 @default.
- W3213972421 hasPrimaryLocation W32139724211 @default.
- W3213972421 hasRelatedWork W124091361 @default.
- W3213972421 hasRelatedWork W2090348056 @default.
- W3213972421 hasRelatedWork W2159944753 @default.
- W3213972421 hasRelatedWork W2302296583 @default.
- W3213972421 hasRelatedWork W2797221366 @default.
- W3213972421 hasRelatedWork W2883229276 @default.
- W3213972421 hasRelatedWork W3141488594 @default.
- W3213972421 hasRelatedWork W4307356437 @default.
- W3213972421 hasRelatedWork W4321633854 @default.
- W3213972421 hasRelatedWork W4366432995 @default.