Matches in SemOpenAlex for { <https://semopenalex.org/work/W3213996819> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3213996819 abstract "In recent years, online shopping, especially for electronic devices has surged to high levels. Consumers seek the best products for the price they pay, and companies seek to improve their products in every way possible. The common link between the two aforementioned statements is reviews left by consumers who have already purchased the product. These reviews help consumers make the right decision to buy a product and help companies analyze how the product was received by the consumers. In this paper, we aim to classify sentiments of the reviews from our dataset by using Natural Language Processing (NLP), which has been achieved using certain Deep learning-BERT and LSTM, and Machine learning- Decision Tree, Logistic Regression, Stochastic Gradient Descent, Multinomial Naïve Bayes and Support Vector Machine algorithms. We also aim to help companies selling these products to streamline efficiency and improve customer satisfaction using Business Intelligence (BI), for which we have made use of PowerBI by Microsoft." @default.
- W3213996819 created "2021-11-22" @default.
- W3213996819 creator A5043208792 @default.
- W3213996819 creator A5047618386 @default.
- W3213996819 creator A5065161570 @default.
- W3213996819 date "2021-07-06" @default.
- W3213996819 modified "2023-10-11" @default.
- W3213996819 title "Business Intelligence Visualization Using Deep Learning Based Sentiment Analysis on Amazon Review Data" @default.
- W3213996819 cites W1572786359 @default.
- W3213996819 cites W1988762048 @default.
- W3213996819 cites W2587281128 @default.
- W3213996819 cites W2808673205 @default.
- W3213996819 cites W2810083390 @default.
- W3213996819 cites W2884086002 @default.
- W3213996819 cites W2903980984 @default.
- W3213996819 cites W2945276142 @default.
- W3213996819 cites W2965778271 @default.
- W3213996819 cites W2979952823 @default.
- W3213996819 cites W3011521633 @default.
- W3213996819 cites W3021186888 @default.
- W3213996819 cites W3122929505 @default.
- W3213996819 doi "https://doi.org/10.1109/icccnt51525.2021.9579786" @default.
- W3213996819 hasPublicationYear "2021" @default.
- W3213996819 type Work @default.
- W3213996819 sameAs 3213996819 @default.
- W3213996819 citedByCount "3" @default.
- W3213996819 countsByYear W32139968192023 @default.
- W3213996819 crossrefType "proceedings-article" @default.
- W3213996819 hasAuthorship W3213996819A5043208792 @default.
- W3213996819 hasAuthorship W3213996819A5047618386 @default.
- W3213996819 hasAuthorship W3213996819A5065161570 @default.
- W3213996819 hasConcept C108583219 @default.
- W3213996819 hasConcept C117568660 @default.
- W3213996819 hasConcept C119857082 @default.
- W3213996819 hasConcept C12267149 @default.
- W3213996819 hasConcept C154945302 @default.
- W3213996819 hasConcept C169258074 @default.
- W3213996819 hasConcept C206688291 @default.
- W3213996819 hasConcept C2522767166 @default.
- W3213996819 hasConcept C2524010 @default.
- W3213996819 hasConcept C2767350 @default.
- W3213996819 hasConcept C33923547 @default.
- W3213996819 hasConcept C41008148 @default.
- W3213996819 hasConcept C50644808 @default.
- W3213996819 hasConcept C52001869 @default.
- W3213996819 hasConcept C56739046 @default.
- W3213996819 hasConcept C66402592 @default.
- W3213996819 hasConcept C84525736 @default.
- W3213996819 hasConcept C90673727 @default.
- W3213996819 hasConceptScore W3213996819C108583219 @default.
- W3213996819 hasConceptScore W3213996819C117568660 @default.
- W3213996819 hasConceptScore W3213996819C119857082 @default.
- W3213996819 hasConceptScore W3213996819C12267149 @default.
- W3213996819 hasConceptScore W3213996819C154945302 @default.
- W3213996819 hasConceptScore W3213996819C169258074 @default.
- W3213996819 hasConceptScore W3213996819C206688291 @default.
- W3213996819 hasConceptScore W3213996819C2522767166 @default.
- W3213996819 hasConceptScore W3213996819C2524010 @default.
- W3213996819 hasConceptScore W3213996819C2767350 @default.
- W3213996819 hasConceptScore W3213996819C33923547 @default.
- W3213996819 hasConceptScore W3213996819C41008148 @default.
- W3213996819 hasConceptScore W3213996819C50644808 @default.
- W3213996819 hasConceptScore W3213996819C52001869 @default.
- W3213996819 hasConceptScore W3213996819C56739046 @default.
- W3213996819 hasConceptScore W3213996819C66402592 @default.
- W3213996819 hasConceptScore W3213996819C84525736 @default.
- W3213996819 hasConceptScore W3213996819C90673727 @default.
- W3213996819 hasLocation W32139968191 @default.
- W3213996819 hasOpenAccess W3213996819 @default.
- W3213996819 hasPrimaryLocation W32139968191 @default.
- W3213996819 hasRelatedWork W1506113033 @default.
- W3213996819 hasRelatedWork W2369306031 @default.
- W3213996819 hasRelatedWork W2438765327 @default.
- W3213996819 hasRelatedWork W2494119046 @default.
- W3213996819 hasRelatedWork W2548633793 @default.
- W3213996819 hasRelatedWork W2596247554 @default.
- W3213996819 hasRelatedWork W2941935829 @default.
- W3213996819 hasRelatedWork W3013279174 @default.
- W3213996819 hasRelatedWork W3132372214 @default.
- W3213996819 hasRelatedWork W4301373556 @default.
- W3213996819 isParatext "false" @default.
- W3213996819 isRetracted "false" @default.
- W3213996819 magId "3213996819" @default.
- W3213996819 workType "article" @default.