Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214096912> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3214096912 endingPage "1703" @default.
- W3214096912 startingPage "1695" @default.
- W3214096912 abstract "Data Clustering on the evolving data stream has becoming primary and vital tasks in the natural language processing in data driven application domains. Performance analysis of data clustering techniques depends on the quality of data representation on the evolving data streams. Machine learning algorithm plays a primary role in high dimensional data clustering of the evolving data streams from social media. Despite of large benefits on implementing those algorithms, it suffers on various aspects such as low accuracy and distribution of the data points in the time varying clusters. In order to resolve above mentioned issues, Deep learning architectures has been analysed on various aspects to develop a optimized model for better data representation of data clustering. In this paper, an optimized deep learning architecture which termed as Concept Based High Dimensional Deep Clustering has been projected for analysing unstructured and high dimensional evolving data in the data streams. Proposed architectures use the hidden layer for better effective identification of the hidden feature. Further the evolving data uses transform learning for data transformation. Those learning transforms high dimensional to low dimensional deep feature space. Finally these deep feature spaces extract the concept specific features on the employment of the max layer using principle component analysis (PCA). PCA on the max layer determines the salient features on ensuring the minimum reconstruction error. Deep architecture is eliminating the NP hard problem and over fitting issues of the clustered results. Further all parameters are fine tuned with respect to certain criterion on cross validation. The Softmax layer is used to map the data points into accurate cluster representations. Finally it is helpful to find a better initialization of the parameters. Extensive experiments have been conducted on real datasets to compare proposed model with several state-of-the-art approaches. The experimental results show that proposed deep clustering model can achieve both effectiveness and good scalability on high dimensional data." @default.
- W3214096912 created "2021-11-22" @default.
- W3214096912 creator A5015798742 @default.
- W3214096912 creator A5040704877 @default.
- W3214096912 creator A5072773073 @default.
- W3214096912 date "2021-11-07" @default.
- W3214096912 modified "2023-09-24" @default.
- W3214096912 title "High Dimensional Deep Data Clustering Architecture Towards Evolving Concept" @default.
- W3214096912 hasPublicationYear "2021" @default.
- W3214096912 type Work @default.
- W3214096912 sameAs 3214096912 @default.
- W3214096912 citedByCount "0" @default.
- W3214096912 crossrefType "journal-article" @default.
- W3214096912 hasAuthorship W3214096912A5015798742 @default.
- W3214096912 hasAuthorship W3214096912A5040704877 @default.
- W3214096912 hasAuthorship W3214096912A5072773073 @default.
- W3214096912 hasConcept C108583219 @default.
- W3214096912 hasConcept C119857082 @default.
- W3214096912 hasConcept C124101348 @default.
- W3214096912 hasConcept C138885662 @default.
- W3214096912 hasConcept C153180895 @default.
- W3214096912 hasConcept C154945302 @default.
- W3214096912 hasConcept C17744445 @default.
- W3214096912 hasConcept C184509293 @default.
- W3214096912 hasConcept C188441871 @default.
- W3214096912 hasConcept C193143536 @default.
- W3214096912 hasConcept C199539241 @default.
- W3214096912 hasConcept C2776359362 @default.
- W3214096912 hasConcept C2776401178 @default.
- W3214096912 hasConcept C2780719617 @default.
- W3214096912 hasConcept C33704608 @default.
- W3214096912 hasConcept C41008148 @default.
- W3214096912 hasConcept C41895202 @default.
- W3214096912 hasConcept C59404180 @default.
- W3214096912 hasConcept C73555534 @default.
- W3214096912 hasConcept C89198739 @default.
- W3214096912 hasConcept C94625758 @default.
- W3214096912 hasConcept C94641424 @default.
- W3214096912 hasConceptScore W3214096912C108583219 @default.
- W3214096912 hasConceptScore W3214096912C119857082 @default.
- W3214096912 hasConceptScore W3214096912C124101348 @default.
- W3214096912 hasConceptScore W3214096912C138885662 @default.
- W3214096912 hasConceptScore W3214096912C153180895 @default.
- W3214096912 hasConceptScore W3214096912C154945302 @default.
- W3214096912 hasConceptScore W3214096912C17744445 @default.
- W3214096912 hasConceptScore W3214096912C184509293 @default.
- W3214096912 hasConceptScore W3214096912C188441871 @default.
- W3214096912 hasConceptScore W3214096912C193143536 @default.
- W3214096912 hasConceptScore W3214096912C199539241 @default.
- W3214096912 hasConceptScore W3214096912C2776359362 @default.
- W3214096912 hasConceptScore W3214096912C2776401178 @default.
- W3214096912 hasConceptScore W3214096912C2780719617 @default.
- W3214096912 hasConceptScore W3214096912C33704608 @default.
- W3214096912 hasConceptScore W3214096912C41008148 @default.
- W3214096912 hasConceptScore W3214096912C41895202 @default.
- W3214096912 hasConceptScore W3214096912C59404180 @default.
- W3214096912 hasConceptScore W3214096912C73555534 @default.
- W3214096912 hasConceptScore W3214096912C89198739 @default.
- W3214096912 hasConceptScore W3214096912C94625758 @default.
- W3214096912 hasConceptScore W3214096912C94641424 @default.
- W3214096912 hasLocation W32140969121 @default.
- W3214096912 hasOpenAccess W3214096912 @default.
- W3214096912 hasPrimaryLocation W32140969121 @default.
- W3214096912 hasRelatedWork W1986085701 @default.
- W3214096912 hasRelatedWork W2184543986 @default.
- W3214096912 hasRelatedWork W2276155953 @default.
- W3214096912 hasRelatedWork W2405305525 @default.
- W3214096912 hasRelatedWork W2466516015 @default.
- W3214096912 hasRelatedWork W2558257045 @default.
- W3214096912 hasRelatedWork W2589765429 @default.
- W3214096912 hasRelatedWork W2642364513 @default.
- W3214096912 hasRelatedWork W2741576990 @default.
- W3214096912 hasRelatedWork W2803104255 @default.
- W3214096912 hasRelatedWork W2896998356 @default.
- W3214096912 hasRelatedWork W2915793907 @default.
- W3214096912 hasRelatedWork W2980552991 @default.
- W3214096912 hasRelatedWork W2997055501 @default.
- W3214096912 hasRelatedWork W3015653593 @default.
- W3214096912 hasRelatedWork W3092132736 @default.
- W3214096912 hasRelatedWork W3176755367 @default.
- W3214096912 hasRelatedWork W3189100433 @default.
- W3214096912 hasRelatedWork W3196655882 @default.
- W3214096912 hasRelatedWork W6001216 @default.
- W3214096912 isParatext "false" @default.
- W3214096912 isRetracted "false" @default.
- W3214096912 magId "3214096912" @default.
- W3214096912 workType "article" @default.