Matches in SemOpenAlex for { <https://semopenalex.org/work/W3214107520> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3214107520 abstract "Life Expectancy is one of the most basic significant aspects of natives that can have a significant relationship between the health sector and the financial movement of a country. This paper investigates the correlation between the Gross Domestic Product (GDP) and Population with Life Expectancy (LE) of Bangladesh. To achieve our goal, we used a long period of data from World Data Open Data (WBOD) and Trends Economics from 1960 to 2020. Using a different number of prediction models was applied as a Multiple Linear Regression Model and several Artificial Neural Network (ANN) to evaluate the life expectancy of Bangladeshis people. There are two independent variables (GDP & Population) used to assess the dependent variable as life expectancy. Our applied model indicates GDP can impact life expectancy, and it refers to longer life expectancy for Bangladeshi's people. There is a strong correlation between population size with life expectancy. Among the applied model, the Multiple Linear Regression (MLR) model stands at the top position with 98% accuracy, and another model, the multi-feed forwarded artificial neural network (MFFNN), regarding the combination of (8,1) with two hidden layer reaches 94% accuracy. Our examination alludes to the life expectancy from 2009 to 2026 of Bangladeshis people. This study shows that GDP improves life expectancy and that population has an impact on life expectancy, and it recommended that the research be expanded with more data and machine learning algorithms." @default.
- W3214107520 created "2021-11-22" @default.
- W3214107520 creator A5011963666 @default.
- W3214107520 creator A5053122758 @default.
- W3214107520 creator A5077446634 @default.
- W3214107520 date "2021-07-06" @default.
- W3214107520 modified "2023-09-23" @default.
- W3214107520 title "Life Expectancy Prediction Based on GDP and Population Size of Bangladesh using Multiple Linear Regression and ANN Model" @default.
- W3214107520 cites W2028501442 @default.
- W3214107520 cites W2051904880 @default.
- W3214107520 cites W2053193285 @default.
- W3214107520 cites W2116063582 @default.
- W3214107520 cites W2157675675 @default.
- W3214107520 cites W2893322690 @default.
- W3214107520 cites W2896477449 @default.
- W3214107520 cites W2905502251 @default.
- W3214107520 cites W3028970690 @default.
- W3214107520 cites W3087919306 @default.
- W3214107520 cites W3089088331 @default.
- W3214107520 cites W4232308119 @default.
- W3214107520 cites W4250703910 @default.
- W3214107520 cites W4256076749 @default.
- W3214107520 cites W75889679 @default.
- W3214107520 doi "https://doi.org/10.1109/icccnt51525.2021.9579594" @default.
- W3214107520 hasPublicationYear "2021" @default.
- W3214107520 type Work @default.
- W3214107520 sameAs 3214107520 @default.
- W3214107520 citedByCount "5" @default.
- W3214107520 countsByYear W32141075202022 @default.
- W3214107520 countsByYear W32141075202023 @default.
- W3214107520 crossrefType "proceedings-article" @default.
- W3214107520 hasAuthorship W3214107520A5011963666 @default.
- W3214107520 hasAuthorship W3214107520A5053122758 @default.
- W3214107520 hasAuthorship W3214107520A5077446634 @default.
- W3214107520 hasConcept C105795698 @default.
- W3214107520 hasConcept C114350782 @default.
- W3214107520 hasConcept C133925201 @default.
- W3214107520 hasConcept C144024400 @default.
- W3214107520 hasConcept C149782125 @default.
- W3214107520 hasConcept C149923435 @default.
- W3214107520 hasConcept C152877465 @default.
- W3214107520 hasConcept C154945302 @default.
- W3214107520 hasConcept C162324750 @default.
- W3214107520 hasConcept C187736073 @default.
- W3214107520 hasConcept C188353592 @default.
- W3214107520 hasConcept C2908647359 @default.
- W3214107520 hasConcept C33923547 @default.
- W3214107520 hasConcept C41008148 @default.
- W3214107520 hasConcept C48921125 @default.
- W3214107520 hasConcept C50522688 @default.
- W3214107520 hasConcept C50644808 @default.
- W3214107520 hasConcept C83546350 @default.
- W3214107520 hasConceptScore W3214107520C105795698 @default.
- W3214107520 hasConceptScore W3214107520C114350782 @default.
- W3214107520 hasConceptScore W3214107520C133925201 @default.
- W3214107520 hasConceptScore W3214107520C144024400 @default.
- W3214107520 hasConceptScore W3214107520C149782125 @default.
- W3214107520 hasConceptScore W3214107520C149923435 @default.
- W3214107520 hasConceptScore W3214107520C152877465 @default.
- W3214107520 hasConceptScore W3214107520C154945302 @default.
- W3214107520 hasConceptScore W3214107520C162324750 @default.
- W3214107520 hasConceptScore W3214107520C187736073 @default.
- W3214107520 hasConceptScore W3214107520C188353592 @default.
- W3214107520 hasConceptScore W3214107520C2908647359 @default.
- W3214107520 hasConceptScore W3214107520C33923547 @default.
- W3214107520 hasConceptScore W3214107520C41008148 @default.
- W3214107520 hasConceptScore W3214107520C48921125 @default.
- W3214107520 hasConceptScore W3214107520C50522688 @default.
- W3214107520 hasConceptScore W3214107520C50644808 @default.
- W3214107520 hasConceptScore W3214107520C83546350 @default.
- W3214107520 hasLocation W32141075201 @default.
- W3214107520 hasOpenAccess W3214107520 @default.
- W3214107520 hasPrimaryLocation W32141075201 @default.
- W3214107520 hasRelatedWork W2018697919 @default.
- W3214107520 hasRelatedWork W2060912888 @default.
- W3214107520 hasRelatedWork W2375721435 @default.
- W3214107520 hasRelatedWork W2535222137 @default.
- W3214107520 hasRelatedWork W2992084892 @default.
- W3214107520 hasRelatedWork W3021457118 @default.
- W3214107520 hasRelatedWork W3122861356 @default.
- W3214107520 hasRelatedWork W4290879003 @default.
- W3214107520 hasRelatedWork W2184922845 @default.
- W3214107520 hasRelatedWork W2738033194 @default.
- W3214107520 isParatext "false" @default.
- W3214107520 isRetracted "false" @default.
- W3214107520 magId "3214107520" @default.
- W3214107520 workType "article" @default.